Chapter 1

Exercise 1: Electrostatics.

1.1 PROBLEM: two coaxial conductors of square section

We have two coaxial conductors of square section, the interior one with a 1000 V
electrostatic potential, respect to the exterior one. The gap between them is filled
with air. The longitudinal length is larger than the transversal lengths, which are
50 mm for the interior conductor, and 150 mm for the interior face of the external
conductor.

Boundary conditions and materials are shown in fig. [T.T}
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Figure 1.1: Materials and boundary conditions. Only one quoter of the full ge-
ometry is represented.



As we want to study the variation of the fields along the diagonal, we can include
the diagonal as apart of our geometry.

In the figurdI.2)a possible mesh to solve the problem is shown. In order to draw
XY graphs in every line,we have to activate the option Meshing — Mesh Criteria
— Mesh — Lines and then select the seven geometry lines(two lines of the interior
conductor + two lines of the exterior conductor + 2 symmetry lines + diagonal). See

fig.

Figure 1.2: Mesh used.

1. Theoretical background.

According to the first Maxwell’s law:

F-F
V-E = (1.1)

where p is the electric charge density and € is just a constant.

—
We can also define the electrostatic field E as the gradient of a electrostatic
potential V, this is:

E =-VV (1.2)

Substituting equation (I.2) in (T.I)), we obtain the final differential equation
known as the Poisson equation:

—Viy = % (1.3)



The equation (T.2)) is the one we are going to solve by the Finite Element
Method.

2. Postprocess.

The electrostatic potential in the air gap between both conductors is represented

in figure[T.3]
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Figure 1.3: Graph of the electric potential.

The figurdI.4] show the potential variation along the dlagonal and the figure
shows the variation of the electric field module |E | in the diagonal. The
maximum value of the electric field module can be seen in figure[I.5]
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Figure 1.4: Potential variation through the diagonal.
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Figure 1.5: Electric field module through the diagonal.



	Exercise 1: Electrostatics.
	PROBLEM: two coaxial conductors of square section


