

Numerical methods in Fluid Mechanics.

Leo M. González Athens Course, Madrid, 14-18 November 2011

Navier-Stokes Equations.

$$\nabla \cdot \mathbf{v} = 0$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \rho + \rho \mathbf{f} + \mu \nabla^2 \mathbf{v}$$

- **1** Non linear $\mathbf{v} \cdot \nabla \mathbf{v}$ second order ∇^2 partial differential equations.
- $oldsymbol{0}$ Momentum conservation Equation \Rightarrow 3 scalar equations
- **3** Mass conservation Equation \Rightarrow 1 scalar equation.
- 4 Unknonws Velocity $\mathbf{v} = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))$ and p(x, y, z, t).

Navier-Stokes Equations.

$$\nabla \cdot \mathbf{v} = 0$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \rho + \rho \mathbf{f} + \mu \nabla^2 \mathbf{v}$$

- **1** Spatial operators: Divergence $\nabla \cdot$, Gradient ∇ and Laplacian ∇^2 .
- **2** Temporal derivatives $\frac{\partial \mathbf{v}}{\partial t}$.

Numerical methods.

- From the continuum to the discrete world (space and time).
- Spatial and temporal derivatives are approximated by local values.

Discretization concept.

$$\frac{\partial f(x,y,z,t)}{\partial x} \approx \frac{f(x+\Delta x,y,z,t) - f(x,y,z,t)}{\Delta x}$$

$$\frac{\partial f(x,y,z,t)}{\partial t} \approx \frac{f(x,y,z,t+\Delta t) - f(x,y,z,t)}{\Delta t}$$

Explicit and implicit time discretization. Example viscous term

Explicit
$$\nabla^{2}\mathbf{v}(x, y, z, t_{n+1}) = \nabla^{2}\mathbf{v}(x, y, z, t_{n})$$

$$Implicit$$

$$\nabla^{2}\mathbf{v}(x, y, z, t_{n+1}) = \nabla^{2}\mathbf{v}(x, y, z, t_{n+1})$$

$$Semi - implicit$$

$$\nabla^{2}\mathbf{v}(x, y, z, t_{n+1}) = \frac{1}{2}(\nabla^{2}\mathbf{v}(x, y, z, t_{n+1}) + \nabla^{2}\mathbf{v}(x, y, z, t_{n+1}))$$

Exercises.

- Matlab: numerical derivative.
- 2 Excel: Laplacian operator.
- 3 Electromagnetic problem.

Eulerian and Lagrangian description of a fluid.

- Euler: All fluid variables are vector fields that depend on space and time. $\overrightarrow{v}(\overrightarrow{r},t)$
- 2 Lagrangian: Fluids are considered as material moving particles. $\overrightarrow{v}_{particle}(t)$

Lagrangian version of the Navier-Stokes equations.

A velocity field is transported affected by pressure, viscosity and other forces.

$$\nabla \cdot \mathbf{v} = 0$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \rho + \rho \mathbf{f} + \mu \nabla^2 \mathbf{v}$$

Transport in fluids.

Let us understand the meaning of the transport operator...

$$\rho \frac{d\mathbf{v}}{dt} = 0$$

v moves with constant value along its trajectory. Exercise Matlab.

Boundary conditions.

We have to limit the space to solve a problem computationally \Rightarrow Computational domain. Boundary types

- Walls.
- Inflows
- Outflows
- Periodic

Boundary layer. (Prandtl 1904)

- Layer of fluid in the immediate vicinity of a bounding surface where effects of viscosity are relevant.
- Boundary layer thickness δ (99% of the freestream velocity) growths or decreases depending on the pressure gradient.

If the boundary layer is taken into account in the computation no-slip Boundary Condition is used: $\mathbf{v}_{Wall} = \mathbf{0}$. If boundary layer is not considered $\Rightarrow \mathbf{v}_{Wall} = \mathbf{v}_{Slip}$

Reynolds number.

- Non dimensional version of the Navier-Stokes equations.
- L reference length.
- U reference velocity.
- ullet ho and μ fluid density and viscosity.

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \rho + \mathbf{f} + \frac{1}{Re} \nabla^2 \mathbf{v}$$

$$Re = \frac{\rho UL}{\mu}$$

Courant number.

- The Courant-Friedrichs-Lewy condition (CFL condition) is a necessary condition for convergence while solving the Navier-Stokes equations.
- Courant number $C = \frac{u_{max} \Delta t}{h}$
 - \bullet Δt time step used in the computation.
 - u_{max} Maximum local velocity
 - h Local mesh size.
- CFL condition $C \leq 1$