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Navier-Stokes Equations.

Vv =0

ov
2
pE-i-pv-Vv = —Vp+pf +uVev
@ Non linear v- Vv second order V2 partial differential equations.
@ Momentum conservation Equation = 3 scalar equations
© Mass conservation Equation = 1 scalar equation.

© 4 Unknonws Velocity
vV = (U(X7y7z) t)7 V(X7y727 t)7 W(X7y7z’ t)) and p(X7y727 t)
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Navier-Stokes Equations.

Vv =0

0
pa—\;erv-Vv = —Vp+ pf + uViv

© Spatial operators: Divergence V-, Gradient V and Laplacian
V2.
© Temporal derivatives 3.
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Numerical methods.

© From the continuum to the discrete world (space and time).

@ Spatial and temporal derivatives are approximated by local
values.
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Discretization concept.

of(x,y,z,t) f(x+Ax,y,z,t)—f(x,y,2,t)
Ox - Ax

87[()(7}’72, t) ~ f(Xayvz7t+At) — f(X,y,Z, t)
ot ~ At
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Explicit and implicit time discretization. Example viscous

term

Explicit

Vzv(x,y, Z,thy1) = V2V(X,y, z,tn)
Implicit

V(% y,2,thi1) = VA(X,y,2, tas1)

Semi — implicit

1
VzV(XJ/,Za tn+1) = §(V2V(X7Y72; tn+1)+V2V(X7y7z7 tn+1))
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Exercises.

@ Matlab: numerical derivative.
@ Excel: Laplacian operator.

© Electromagnetic problem.
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Eulerian and Lagrangian description of a fluid.

@ Euler: All fluid variables are vector fields that depend on space
and time. V' (7, t)
@ Lagrangian: Fluids are considered as material moving
. —
particles. v particre (t)
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Lagrangian version of the Navier-Stokes equations.

A velocity field is transported affected by pressure, viscosity and

other forces.

Vv =0

d
’Od_\tl = —Vp+ pf + puV3v
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Transport in fluids.

Let us understand the meaning of the transport operator...

@
pdt

v moves with constant value along its trajectory. Exercise Matlab.

=0
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Boundary conditions.

We have to limit the space to solve a problem computationally =
Computational domain. Boundary types

o Walls.
o Inflows
o Outflows

@ Periodic
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Boundary layer.(Prandtl 1904)

o Layer of fluid in the immediate vicinity of a bounding surface
where effects of viscosity are relevant.

@ Boundary layer thickness § (99% of the freestream velocity)
growths or decreases depending on the pressure gradient.

If the boundary layer is taken into account in the computation
no-slip Boundary Condition is used: vy, = 0. If boundary layer is
not considered = vy = Vsjip
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Reynolds number.

Non dimensional version of the Navier-Stokes equations.
L reference length.

U reference velocity.

p and p fluid density and viscosity.

ov 1
— : - — fr—Vv?
at+v Vv Vp+ +Rer
UL
Re = P
7
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Courant number.

@ The Courant—Friedrichs—Lewy condition (CFL condition) is a
necessary condition for convergence while solving the
Navier-Stokes equations.

o Courant number C = ”’""Txm

o At time step used in the computation.
@ Umax Maximum local velocity
o h Local mesh size.

o CFL condition C <1
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