
Chapter 1

THE FINITE ELEMENT
METHOD (FEM)

1.1 Galerkin formulation

1.1.1 General procedure

In this section we shall study the Galerkin method, a method which is di-
rectly applicable to the Boundary Value Problem (BVP) irrespective of the
existence of an equivalent extremal formulation. Let us consider the follow-
ing linear (Partial Differential Equation) PDE with homogeneous (essencial)
Dirichlet boundary conditions on Γ:

Lu = f in Ω (1.1)
u = 0 in Γ (1.2)

The solution u is sought in a function space Vo consisting of sufficiently
smooth functions satisfying homogeneous Dirichlet conditions on Γ. We assume
that the space Vo has a countable basis φ0, φ1, φ2..., which means that any
function w ∈ Vo can be expressed as an infinite linear combination of basis
functions. Formally we can write

w =
∞∑

j=1

αjφj (1.3)

for any w ∈ Vo. When an arbitrary w ∈ Vo is substituted into (1.1) the
equality is not satisfied. In fact,

Lu− f = R (1.4)

where R = R(w) is called the residual or error that results from taking w in
stead of the solution u. We now try to select an element u ∈ Vo for which the
residual R(u) is zero. The residual is identically zero if its projection on each
basis function is equal to zero. So we require that R(u) satisfies:

∫

Ω

R(u)φidΩ = 0 i = 1, 2, 3, ... (1.5)
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which implies ∫

Ω

(Lu− f)φidΩ = 0 i = 1, 2, 3, ... (1.6)

The order of differentiation in (1.6) can be lowered by performing an inte-
gration by parts (Green’s formula). Substitution of the boundary conditions
leads to an expression of the form

a(u, φi) =
∫

Ω

fφidΩ (1.7)

which must be satisfied for i = 1,2,... The form a(., .) is bilinear (see the
examples below). Let us remark that by the linearity of (1.7) with respect to
φi, (1.7) is equivalent to

Find u ∈ Vo such that

a(u, φi) =
∫

Ω

fφidΩ (1.8)

where the functions are called test functions. The Galerkin method now
consists in taking a finite dimensional subspace VoN of Vo spanned by N basis
functions, say φ1..., φN . The approximate problem can then be defined as

Find ũ ∈ VoN such that

a(ũ, φ) =
∫

Ω

fφdΩ ∀φ ∈ VoN (1.9)

which is equivalent to

Find ũ ∈ VoN such that

a(ũ, φi) =
∫

Ω

fφidΩ i = 1, 2, ....N (1.10)

The approximate solution ũ being a function in VoN has the form

ũ =
N∑

j=1

αjφj (1.11)

Substitution of (1.11) into (1.10) leads to the following system of linear
algebraic equations for α1, ..., αN :

N∑

j=1

a(φj , φi) =
∫

Ω

fφidΩ i = 1, 2, ....N (1.12)

It may be clear that for the actual construction of the basis φ1, ..., φN func-
tions the FEM can be used most efficiently.

Problem (1.8) is known as the weak (or variational) formulation of problem
(1.1) and it is obtained starting from the BVP formulation. In order to prove
that both formulations, the BVP and the variational problem, are equivalent,
we still have to prove that a solution of the variational problem is actually a
solution of the original BVP.
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When, instead of homogeneous Dirichlet conditions, the solution must satisfy
inhomogeneous Dirichlet conditions u = go on Γ, we write u as

u = Go +
∞∑

j=1

αjφj (1.13)

where Go is such that Go|Γ = g0 and φ1, ..., φN vanish on Γ. The (equivalent)
weak formulation then will be

Find u ∈ Vgo such that

a(u, φ) =
∫

Ω

fφdΩ ∀φ ∈ Vo (1.14)

where V denotes the set of functions of the form (1.13):

Vgo = Vo + Go (1.15)

The approximate problem is formulated as follows:

Find ũ ∈ VgoN such that

a(ũ, φ) =
∫

Ω

fφdΩ ∀φ ∈ VoN (1.16)

where VgoN = Go + VON .

1.1.2 1D Poisson equation; Homogeneous boundary con-
ditions

Consider the following Poisson equation in 1D

−d2u

dx2
= f on (0, 1) (1.17)

with boundary conditions

u(0) = 0
du

dx
(1) = 0 (1.18)

We consider the function space V of sufficiently smooth functions that vanish
at x = 0. Let φ ∈ V be arbitrary. It follows from (1.17) that

−
∫ 1

0

d2u

dx2
φdx =

∫ 1

0

fφdx (1.19)

Integration by parts of the left hand side gives:
∫ 1

0

du

dx

dφ

dx
dx− [

du

dx
φ]10 =

∫ 1

0

fφdx (1.20)

Since u(0) = 0 and du
dx (1) = 0, (1.20) reduces to

∫ 1

0

du

dx

dφ

dx
dx =

∫ 1

0

fφdx (1.21)
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The variational formulation of problem (1.20), (1.20) reads now

Find u ∈ V such that

a(u, φi) =
∫ 1

0

fφdx ∀φ ∈ V (1.22)

with a(u, φ) =
∫ 1

0
du
dx

dφ
dxdx.

In the space V we choose a finite number of basis functions φ1, ..., φN . When
the function space spanned by these basis functions is denoted by VN the ap-
proximate variational formulation reads:

Find ũ ∈ VN such that

a(ũ, φi) =
∫ 1

0

fφdx ∀φ ∈ VN (1.23)

Writing ũ in the form

ũ =
N∑

j=1

αjφj (1.24)

then, (1.23) is equivalent to the following system of equations for α1, ..., αN .

N∑

j=1

αj

∫ 1

0

φjφidx =
∫ 1

0

fφidx i = 1, 2, ....N (1.25)

The FEM can be used to choose the basis functions. We subdivide the in-
terval (0, l) into N subregions (subintervals), we choose the extremities of the
subintervals as nodal points 0 = x0 < x1 < ...xN = 1. The basis functions
φi i = 1, 2, ..., N are then completely determined by the following three prop-
erties

1. φi(xj) = δij i, j = 1, ...N .

2. φi is linear on each subinterval

3. φi is continuous on [0, 1].

Then

ũ(x) =
N∑

j=1

αjφj(x) (1.26)

and the system of linear equations for ũl, ..., ũN becomes

N∑

j=1

ũj

∫ 1

0

φjφidx =
∫ 1

0

fφidx i = 1, 2, ....N (1.27)
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1.1.3 1D Poisson equation; non-homogeneous boundary
conditions.

Consider the Poisson equation

−d2u

dx2
= f on (0, 1) (1.28)

with boundary conditions

u(0) = g0
du

dx
(1) = g1 (1.29)

We define the variable change û = u− uΓ, where uΓ is defined as:

uΓ = g0 if x = 0 (1.30)
uΓ = 0 rest (1.31)

Now the problem can be written as:

−d2(û + uΓ)
dx2

= f on (0, 1) (1.32)

with the boundary conditions

û(0) = 0
dû

dx
(1) = g1 (1.33)

This new problem is an homogeneous one and it can be solved as we already
know. The solution comes from the solution of the system for ûl, ..., ûN :

N∑

j=1

ûj

∫ 1

0

dφj

dx

dφi

dx
dx =

∫ 1

0

fφidx− g0

∫ 1

0

dφj

dx

dφi

dx
dx + g1φi i = 1, 2, ....N

(1.34)
This system of equations differs only slightly from the one obtained with ho-

mogeneous Dirichlet-Neumann boundary conditions. Only the terms−g0

∫ 1

0
dφj

dx
dφi

dx dx
and g1φi have been added to the right hand side.

To obtain the final solution we have to replace the original function u =
û + uΓ, so:

u =
N∑

j=1

ûjφj + uΓ (1.35)

which means adding g0 locally at x = 0.
It is important to remark that the solution of (1.34) means the solution of a

linear system. Calling:

Rij =
∫ 1

0

dφj

dx

dφi

dx
dx (1.36)

bi =
∫ 1

0

fφidx−Rijg0 + g1φi (1.37)
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N∑

j=1

Rij ûj = bi (1.38)

1.2 Construction of a basis

In this chapter we shall construct finite elements in the 1D case and also the
construction of quadratic and cubic 1D elements will be discussed. To facilitate
the construction of these elements we shall introduce the notion of barycentric
coordinates. Next we introduce coordinate and element transformation and the
notion of isoparametric finite element.

1.2.1 Linear and quadratic functions in 1D

Let us consider an arbitrary interval e = [x1, x2] ⊂ [0, 1]. We define ∀x ∈ e
the following functions λ1 and λ2 from [x1, x2]

λ1 =
x2 − x

x2 − x1
λ2 =

x− x1

x2 − x1
(1.39)

These functions have the following properties:

1. X is linear on e, i = 1,2.

2. λi(xj) = δij .

3. λ1(x) + λ2(x) = 1 ∀x ∈ e.

The relation of the functions λ1 and λ2 to the 1D piecewise linear basis
functions is evident. In fact, the basis function φi corresponding to xi, i = 1, 2
satisfies:

1. φi is linear on each subinterval.

2. φi is continuous on [0,1].

3. φi(xj) = δij i, j = 1, 2.

so that the restriction of φi to e is precisely the function λi(See Fig.1.1 (a)
and (b)) For any point x ∈ e we can calculate the values of the functions X and
h2. The pair {λ1(x), λ2(x)} is called the barycentric coordinates of the point x
on e with respect to the points x and x. The 1D linear finite element is now
defined as: (1.) a subdivision of [0,1] into subintervals, (2.) on each subinterval
we choose two nodal points: the end points x1 and x2 of the subinterval, (3.)
on each subinterval we define for each nodal point its basis function: on [x1, x2]
for instance

φ1 = λ1 φ2 = λ2 (1.40)

The function space spanned by φ1 and φ2 on e is denoted by P1(e), and
contains all polynomials of degree ≤ 1 in x. Generally we denote by Pk(e), k
non-negative integer, e ⊂ R the function space of polynomials of degree < k in
x1, x2, ..., xn. In other words, Pk(e) is the function space spanned by xk1

1 xk2
2 xkn

n
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Figure 1.1: (a) Basis function φi (b)The function λi

Figure 1.2: Linear shape function ũ on e

with ki > 0, i = 1, ..., n, k1 +k2 + ...+kn < k. It follows that the shape function
ũ takes the following form on e (see Fig.1.2)

ũ(x) = ũ1φ1(x) + ũ2φ2(x) = ũ1λ1(x) + ũ2λ2(x) (1.41)

Notice that, since the basis functions are linear on e, their derivatives are
constant:

dφ1

dx
=

dλ1

dx
=

−1
x2 − x1

dφ2

dx
=

dλ2

dx
=

1
x2 − x1

(1.42)

The barycentric coordinates {λ1, λ2} can be used to define higher order basis
functions in a very efficient way. Let us consider 1D basis functions that are
quadratic on each subinterval. We assume that the interval [0,1] is subdivided
into subintervals. To define uniquely a quadratic function on a subinterval
e = [x1, x2] we must fix its values in three different points. For this we choose
on each subinterval e the following nodal points: the two end points which we
call x1 and x2 and the mid-point x12= 1

2 (x1 + x2) (See Fig.1.3)
Let {λ1, λ2} be the barycentric coordinates of a point x ∈ e with respect

to x1, x2. The function λ1 is linear and λi(xj) = δij , i, j = 1, 2. Moreover
λ1(x12) = λ2(x12) = 1

2 . Next we notice that λ1(x2) = 0 and λ1(x12) − 1
2 = 0.

Hence the function λ1(x)(λ1(x) − 1
2 ) vanishes at x = x2 and x = x12 and is

quadratic since both λ1 and λ1 − 1
2 are linear. For x = x1 the function takes

the value λ1(x1)(λ1(x1)− 1
2 ) = 1(1− 1

2 ) = 1
2 .

From this we deduce that the function

φ1(x) = 2λ1(x)(λ1(x)− 1
2
) (1.43)
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Figure 1.3: Element e with nodal points x1, x2 and x12

Figure 1.4: Quadratic basis functions

is the quadratic basis function on e corresponding to point x1.
Similarly we find that

φ2(x) = 2λ2(x)(λ2(x)− 1
2
) (1.44)

is the quadratic basis function on e corresponding to point x2.
For point x12 we remark that λ1(x2) = 0, λ2(x1) = 0 and that λ1(x12)λ2(x12) =
1
2

1
2 = 1

4 which makes that the function

φ12(x) = 4λ1(x)λ2(x) (1.45)

is the quadratic basis function on e corresponding to point x12.
The three basis functions are depicted in Fig.1.4

The function space spanned by φ1, φ2 and φ12 on e is denoted by P2(e) and
consist of all polynomials of degree ≤ 2 in x1. The quadratic shape function
takes now the following parabolic form on e See Fig.1.5.

ũ(x) = ũ1φ1(x) + ũ2φ2(x) + ũ12φ12(x)
= ũ1λ1(x)(2λ1(x)− 1) + ũ2λ2(x)(2λ2(x)− 1) + 4ũ12λ1(x)λ2(x) (1.46)
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Figure 1.5: Quadratic shape function ũ on e

1.3 Triangular basis functions in 2D

1.3.1 Barycentric coordinates

In this section we shall use barycentric coordinartes to define linear, quadratic
and extended quadratic basis functions in 2D. Let Ω be a 2D region which is
subdivided into a finite number of triangles ek, k = 1, 2, ..., K, satisfying the
properties (falta referencia). A linear function on a triangle e is completely
determined by its values in-three non-collinear points, for example the vertices
x1, x2 and x3 with coordinates x1 = (x1

1, x
1
2), x2 = (x2

1, x
2
2), x3 = (x3

1, x
3
2) We

shall now define three functions λi = λ(x), i = 1, 2, 3 on e by the following
requirements

1. λi(xj) = δij .

2. λi is linear on e

These functions λi can be calculated as follows: Take for instance λ1.Since
λ1 is linear it takes the following form:

λi = α0 + α1x1 + α2x2 x = (x1
1, x

1
2)

Moreover we have

λ1(x1) = α0 + α1x
1
1 + α2x

1
2

λ1(x2) = α0 + α1x
2
1 + α2x

2
2

λ1(x3) = α0 + α1x
3
1 + α2x

3
2 (1.47)

System (1.47) can be solved for α0, α1 and α2; we find

α0 =
x2

1x
3
2 − x3

1x
2
2

∆
α1 =

x2
2 − x3

2

∆
α2 =

x3
1 − x2

1

∆

with

∆ = (x3
1 − x2

1)(x
1
2 − x2

2)− (x2
2 − x3

2)(x
2
1 − x1

1)
= ±twice the area of e
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Figure 1.6: Triangle e with particular points

Similar expressions can be found for λ1 and λ3. We easily verify that the
following relation holds

λ1(x) + λ2(x) + λ3(x) = 1 for all x ∈ e (1.48)

For any point x ∈ e we can calculate the values of the functions λ1,λ2 and λ3.
Now, similar to the definition in the 1D case, we call the triple {λ1(x), λ2(x), λ3(x)}
the barycentric coordinates of the point x ∈ e with respect to the vertices
x1, x2, x3. Let us calculate the barycentric coordinates of some particular points
in a triangle e (see Fig.1.6).

x12 =
1
2
(x1 + x2) mid-point of segment [x1, x2]

x13 =
1
2
(x1 + x3) mid-point of segment [x1, x3]

x23 =
1
2
(x2 + x3) mid-point of segment [x2, x3]

x123 =
1
3
(x1 + x2 + x3) barycentre of e

x1 → {1, 0, 0}
x2 → {0, 1, 0}
x3 → {0, 0, 1}

x12 → {1
2
,
1
2
, 0}

x13 → {1
2
, 0,

1
2
}

x23 → {0,
1
2
,
1
2
}

x123 → {1
3
,
1
3
,
1
3
}
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Figure 1.7: λ-relations for some segments

Notice also that points on the following segments satisfy a relation expressed
in the barycentric coordinates:

x ∈ [x1, x2] ⇔ λ3(x) = 0

x ∈ [x1, x3] ⇔ λ2(x) = 0

x ∈ [x2, x3] ⇔ λ1(x) = 0

x ∈ [x12, x13] ⇔ λ1(x) =
1
2

x ∈ [x12, x23] ⇔ λ1(x) =
1
2

x ∈ [x13, x23] ⇔ λ3(x) =
1
2

The situation is sketched in Fig.1.7
Using these barycentric coordinates we shall now construct linear,quadratic

and extended quadratic basis functions.

1.3.2 Linear finite element

For the construction of piecewise linear basis functions we take all the vertices
of the triangles as nodal points:x1, x2, . . . , xN . A piecewise linear basis function
φi corresponding to nodal point xi is such that

1. φi(xj) = δij i, j = 1, 2, . . . , N

2. φi is linear on each ek

3. φi is continuous on Ω

We plainly verify that the basis function φi is identically zero on those tri-
angles for which x1 is no vertex. Thus, let a triangle e with vertex xi be given.
Introduce a local numbering of the vertices of e (see Fig.1.8

The question now is: what is the shape on e of the basis functions φi corre-
sponding to the points xi, i=1,2,3. The function φi is linear on e and satisfies
φi(xj) = δij , i,j=1,2,3. So we see inmediately that

φ1 = λ1, φ2 = λ2, φ3 = λ3 (1.49)
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Figure 1.8: Triangle e with nodal points x1, x2, x1

where {λ1(x), λ2(x), λ3(x)} denotes the barycentric coordinates of x with
respect to the points x1,x2,x3.The function space spanned by φ1, φ2, φ3 on e (the
shape functions on e) is termed P1(e) and is exactly the collection of polynomials
on e of degree ≤ 1 in x1 and x2.

1.3.3 Quadratic finite element

A piecewise quadratic basis function φ has in 2D the general form:

φ(x) = α1x
2
1 + α2x1x2 + α3x

2
2 + α4x1 + α5x2 + α6

This implies that on each triangle φ must be specified by six values to deter-
mine the parameters α1, α2, . . . , α6. On each triangle we choose six nodal points:
the three vertices and the three mid-points of sides. With local renumbering we
have the situation of Fig.1.9.

We shall determine the shape of the basis functions φ1, φ2, φ3, φ12, φ13, φ23

corresponding to the points x1, x2, x3, x12, x13, x23 respectively.
Take for instance φ1 which vanishes in the nodal points x2, x3, x12, x13, x23 and
equals unity at x1. For all x ∈ [x2, x3] we have λ1(x) = 0, for all x ∈ [x12, x13]
we have λ1(x) = 1

2 . Consequently the function λ1(x)(λ1(x) − 1
2 ) vanishes at

x2, x3, x12, x13, x23 and equals 1
2 at x1. The basis function φ1 is thus defined by

φ1 = λ1(2λ1 − 1) (1.50)

In the same way we obtain

φ2 = λ2(2λ2 − 1) (1.51)

φ3 = λ3(2λ3 − 1) (1.52)

For the basis function φ12 we notice that segment [x1, x3] satisfies λ2(x) = 0
and that [x2, x3] satisfies λ1(x) = 0. The function λ1(x)λ2(x) thus vanishes at
x1, x2, x3, x13, x23 and equals 1

4 at x12. Hence φ12 is defined by

φ12 = 4λ1λ2 (1.53)
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Figure 1.9: Triangle e with six nodal points

Similarly we have

φ13 = 4λ1λ3 (1.54)

φ23 = 4λ2λ3 (1.55)

The function space spanned by φ1, φ2, φ3, φ12, φ13, φ23 is called P2(e) and is
precisely the space of polynomials of degree ≤ 2 in x1 and x2
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