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CHAPTER III: CONICS AND QUADRICS
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4. QUADRICS
Let P3 = P(R4) be the real projective tridimensional space.

Definition. A quadric Q in P3 determined by a quadratic form ω : R4 −→ R is
the set of points of P3 defined by:

Q = {X ∈ P3 | ω(X) = 0}
Let R = {O,B} be a coordinate system in A3 and let

A =


a00 a01 a02 a03
a01 a11 a12 a13
a02 a12 a22 a23
a03 a13 a23 a33


be the matrix associated to the quadratic form ω then

Q = {X ∈ P3 | X tAX = 0}

=

[(x0, x1, x2, x3)] ∈ P3 |
3∑
i=0

3∑
j=0

aijxixj = 0


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The affine quadric defined by the quadratic form ω is the subset Q of A3

defined by
Q = {X ∈ A3 | ω(X̃) = 0},

where X̃ = (1, x1, x2, x3), with (x1, x2, x3) ∈ A3. It is verified that Q ⊂ Q.
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4.1 Singular points and projective classification

Let Q be a projective quadric determined by a quadratic form ω : R4 −→ R,
with polar form f : R4 × R4 −→ R and associated matrix A with respect to
certain coordinate system.

Definitions.

We say that two points A,B ∈ P3 are conjugated with respect to Q if
f (A,B) = 0.

We say that a point P ∈ P3 is an autoconjugated point with respect to
Q if ω(P ) = f (P, P ) = 0.

We say that a point P ∈ P3 is a singular point of Q if it is conjugated
with every point of P3; this is, f (P,X) = 0 for every point X ∈ P3. This
is, if

f (P,X) = P TAX = 0, ∀X ∈ P3,
or equivalently,

P TA = 0.
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We say that a point P ∈ P3 is a regular point of Q if it is not a singular
point

The quadric Q is non degenerate, regular or ordinary if it does not have
singular points.

The quadric Q is degenerate or singular if it has a singular point.
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Observations: Let Q be a projective quadric generated by a quadratic form
ω, with polar form f and associated matrix A.

1. Let sign(Q) be the set of singular points of Q; this is,

sign(Q) = {X ∈ P3 | f (X, Y ) = 0, for every Y ∈ P3}
= {X ∈ P3 | AX = 0}.

We have
dim(sign(Q)) = 3− rank(A).

2. If X ∈ P3 is a singular point, then X ∈ Q.

Proof. We have to check that ω(X) = 0. We have ω(X) = f (X,X) = 0

as X is conjugated with any point, in particular with itself.
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3. The line determined by a singular point X and any other point of the
quadric, Y ∈ Q, is contained on the quadric.

Proof. As X is singular we know that ω(X) = 0 and f (X, Y ) = 0 and
as Y belongs to the quadric ω(Y ) = 0. Any point of the line determined
by X and Y has the form Z = λX + µY . We have to check whether
ω(Z) = 0. We have:

ω(Z) = ω(λX + µY ) = f (λX + µY, λX + µY )

= f (λX, λX + µY ) + f (µY, λX + µY )

= f (λX, λX) + f (λX, µY ) + f (µY, λX) + f (µY, µY )

= λ2f (X,X) + 2λµf (X, Y ) + µ2f (Y, Y )

= λ2ω(X)︸ ︷︷ ︸
0

+ 2λµf (X, Y )︸ ︷︷ ︸
0

+ µ2ω(Y )︸ ︷︷ ︸
0

= 0.

4. All the points that belong to the line determined by two singular points
are singular.
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Proof. Let Z = λX + µY be any point of the line formed by two singular
points X and Y . We have to check that f (Z, T ) = 0, for every T ∈ P3.
We have:

f (Z, T ) = f (λX + µY, T )

= f (λX, T ) + f (µY, T )

= λf (X,T )︸ ︷︷ ︸
0

+ µf (Y, T )︸ ︷︷ ︸ = 0.

0

5. If the quadric Q contains a singular point, then Q is formed by lines that
contain that point.
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4.1.1 Projective classification

1. If detA 6= 0, then the quadric Q is ordinary or not degenerate.

2. If detA = 0, then the quadric Q is degenerate.

a) If rank(A) = 3, then Q has an unique singular point P .

If P is a proper point, then Q is a cone with vertex P .
If P is an improper point, then Q is a cylinder.

b) If rank(A) = 2, then Q has a line of singular points and Q is a pair of
planes with intersection the line of singular points.

c) If rank(A) = 1, then Q has a plane of singular points and Q is a
double plane.
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4.2 Polarity defined by a quadric

Let Q be a quadric with polar form f and associated matrix A. Let us con-
sider P ∈ P3, we call polar variety of P with respect to the quadric Q to the
set of conjugated points of P ; this is,

VP = {X ∈ P3 | f (P,X) = 0}
= {X ∈ P3 | P tAX = 0}.

If P ∈ P3 is a singular points, then VP = P3.
If P ∈ P3 is not a singular point, then VP is a plane πP and we call it polar
plane of P with respect to the quadric Q:

πP = {X ∈ P3 | P tAX = 0}.



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

Definition. Given a plane π of the space P3, we call pole of the plane π with
respect to the quadric Q to the point whose polar plane is π; this is, πP = π.

If the equation of the plane π is

π ≡ u0x0 + u1x1 + u2x2 + u3x3 = UTX = 0,

with U = (u0, u1, u2, u3) and X = (x0, x1, x2, x3),

then πP = π if and only if

P TAX = UTX, for every X ∈ P3

equivalently,
P TA = UT ⇐⇒ AP = U.

And if the quadric Q is not degenerate (therefore, detA 6= 0), then P =

A−1U .
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Theorem. If the point P belongs to the polar plane of a point R, then the
point R is in the polar plane of P .

This is due to the condition of conjugation f (P,R) = 0 ; it is symmetric in P
and R.

As we have seen, given a quadric Q, every non sigular point P is assigned
a plane (its polar plane) and reciprocally, each plane π is assigned a point
(its pole).

Definition. We call polarity defined by a quadric Q to the transformation in
which each non singular point of Q is assigned to its polar plane. This is,

P3� sign(Q) −→ Planes of P3
P 7−→ πP
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Fundamental theorem of polarity
The polar planes of the points of a plane π of P3, with respect to a regular
quadric Q, contain the same point which is precisely the pole of π.
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4.3 Intersection between line and quadric

Let Q be a projective quadric with polar form f and associated matrix A.
Let r be the projective line which contains the independent points P =

[(p0, p1, p2, p3)] and Q = [(q0, q1, q2, q3)].

A point X ∈ P3 is in the intersection between the conic and the line if and
only if: {

X ∈ r
X ∈ Q ⇐⇒

{
X = λP + µQ

ω(X) = 0
⇐⇒

{
X = λP + µQ

ω(λP + µQ) = 0

The condition ω(λP + µQ) = 0 is written:

0 = λ2ω(P ) + 2λµf (P,Q) + µ2ω(Q).

Dividing the former equation by µ2 and writing t = λ/µ we obtain the follow-
ing second degree equation:

0 = ω(P )t2 + 2f (P,Q)t + ω(Q)
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with discriminant
∆ = f (P,Q)2 − ω(P )ω(Q).

If f (P,Q) = 0, ω(P ) = 0 and ω(Q) = 0, then P,Q ∈ Q and, therefore,
r ⊂ Q.

If not all the coefficients of the second degree equation 0 = ω(P )t2 +

2f (P,Q)t + ω(Q) are zero, then there are two intersection points (the
two solutions of the equation).

1. If ∆ = f (P,Q)2−ω(P )ω(Q) > 0, the line, and the quadric intersect in
two different real points. The line is called secant line to the quadric.

2. If ∆ = f (P,Q)2 − ω(P )ω(Q) = 0, the line and the quadric intersect in
a double point. The line is called tangent line to the quadric.

3. If ∆ = f (P,Q)2 − ω(P )ω(Q) < 0, the line and the conic intersect in
two different improper points. The line is called exterior line to the
quadric.
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4.3.1 Tangent variety to a quadric

Definition. The tangent variety to a quadric Q in a point P ∈ P3, is the set of
points X ∈ P3 such that the line that joins P and X is tangent to the quadric
Q; this is,

TPQ = {X ∈ P3 | line XP is tangent to Q}
= {X ∈ P3 | ∆ = f (P,X)2 − ω(P )ω(X) = 0}
= {X ∈ P3 | f (P,X)2 = ω(P )ω(X)}.

Observations.

1. TPQ is a degenerate quadric which has P as singular point.

2. If P ∈ Q is a regular point, then

TPQ = {X ∈ P3 | f (P,X)2 = 0}
= {X ∈ P3 | P tAX = 0}

is a plane, called the tangent plane to Q in P . In fact, it is the polar plane
of the point P ; this is, TPQ = πp.
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3. If P ∈ Q is a singular point, then TPQ = P3.

4.4 Affine classification and notable elements of quadrics

Let A3 = P(R4) be the projectivized affine space, with coordinate system
R = {O,B}. And let ω be a quadratic form with associated matrix A. Let

Q = {X ∈ P3(R4) | ω(X) = 0

be a projective quadric with affine quadric

Q = Q ∩ A3 = {X ∈ A3 | ω(X̃) = 0}, where X̃ = (1, x1, x2, x3).
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4.4.1 Center of an affine quadric

Definition. We call center of an affine quadric Q to the pole of the plane at
infinity, if it exists. If that point is contained in the plane at infinity then the
quadric has an improper center, otherwise a proper center.

The equation of the plane at infinity is x0 = 0 and the equation of the quadric
is X tAX = 0. Therefore, the pole of the plane at infinity is the point P such
that P tA = (1, 0, 0, 0).

Proposition. The proper center of an affine quadric is the center of symme-
try. Any line that contains the center of a quadric intersects the quadric in
two symmetric points with respect to the center.
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4.4.2 Relative position of the quadric and the plane at infinity

Let π∞ ≡ x0 = 0 be the equation of the plane at infinity and let us con-
sider the projective quadric Q determined by a quadratic form ω and with
associated matrix

A =


a00 a01 a02 a03
a01 a11 a12 a13
a02 a12 a22 a23
a03 a13 a23 a33

 .

We have:

Q ∩ π∞ = {X ∈ π∞ | ω(X) = 0} =
{

(0, x1, x2, x3) | X tAX = 0
}

this is,

Q ∩ π∞ ≡ a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3 = 0,
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then Q ∩ π∞ is a conic of the plane at infinity π∞ with matrix

A00 =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 .

Proposition. The quadric Q has a center if and only if detA00 6= 0. Besides,

If detA00 6= 0, then the conic Q ∩ π∞ is regular and Q has a center.

If detA00 = 0, then the conic Q∩π∞ is degenerate and Q has no center.
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4.4.3 Diameters of a quadric

Definition. We call diameter of a quadric Q to every line that contains the
center of Q.

Definition. We call diametral plane of a quadric Q to the planes that contain
the center of Q.

Definition. Two diameters D and D′ are said conjugated if their improper
points are conjugated.

Definition. We call diametral polar plane of a diameter D to the polar plane
of the improper point of D.
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4.4.4 Axes of a quadric with proper center

Definition. We call axis of a quadricQ to the diameter which is perpendicular
to its diametral polar plane.

Let Q be a projective quadric with associated matrix A. And let A00 be the
matrix of the conic Q ∩ π∞.

As Q has a proper center Z, the matrix A00 is not singular, so its three
eigenvalues are not zero λ1, λ2 and λ3.

Let v1, v2 and v3 be the eigenvectors associated to λ1, λ2 and λ3 respectively
(we choose the eigenvectors which are orthogonal two by two).

The axes ofQ are the lines that contain the center, Z, and have as directions
the vectors v1, v2 and v3, respectively.
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The coordinate system R = {Z, {v1, v2, v3}} gives us a cartesian autocon-
jugated coordinate system.

We can find three situations:

1. The three eigenvalues are different. Then Q has three axes which are
orthogonal two by two.

2. An eigenvalue is double, λ1 = λ2, and the other, λ3, is simple. Then the
dimension of the subspace of eigenvectors associated to the double
eigenvalue is dimV1 = 2 and dimV3 = 1. Then V1 is a plane of axes
perpendicular to the axis V3. In this case the quadric Q is a revolution
quadric, whose axis is the one that corresponds to the eigenvalue λ3.

3. The three eigenvalues are the same, λ1 = λ2 = λ3. Then any diameter
is the axis and the quadric is a sphere.

Definition. We call main planes of a quadric Q to the diametral polar planes
of the axes.
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4.4.5 Asymptotic cones

Definition. We call asymptotes of a quadric Q to the tangents of a conic in
its improper points.

Let Q be a projective quadric with proper center Z.

Definition. The tangent variety to the quadricQ from the center Z [(z0, z1, z2, z3)]

is a cone that is called asymptotic cone. The equation of the asymptotic
cone is the following one:

f (Z,X)2 − ω(Z)ω(X) = 0⇐⇒ (ZtAX)(ZtAX)− (ZtAZ)(X tAX) = 0

⇐⇒ x20 − z0(X tAX) = 0

⇐⇒ x20 −
detA00

detA
(X tAX) = 0

equivalently
detA

detA00
x20 −Q = 0.

The quadrics of ellyptic type have an imaginary asymptotic cone and the
quadrics of hyperbolic type have a real asymptotic cone.
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The generatrixs of the cone (lines of the cone) are the diameters tangent to
the quadric.

We call asymptotic plane to the polar planes of the points of the improper
conic of Q (Q ∩ π∞ = C) (if there exists any).

Example 1. Let us consider the quadric Q ≡ x21 + 3x23 + 4x1x2 + 2x3 + 2 = 0.
The matrix of Q is:

A =


2 0 0 1

0 1 2 0

0 2 0 0

1 0 0 3


The determinant of A is detA = −20, quadric with proper center:

(
z0 z1 z2 z3

)


2 0 0 1

0 1 2 0

0 2 0 0

1 0 0 3

 = ρ
(

1 0 0 0
)
,
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this is 
2z0 + z3 = ρ

z1 + 2z2 = 0

2z1 = 0

z0 + 3z3 = 0

The center is: Z [(1, 0, 0,−1/3)].
Equation of the asymptotic cone:

detA

detA00
x20 −Q = 0⇐⇒ 20

12
x20 − (x21 + 3x23 + 4x1x2 + 2x3x0 + 2x20) = 0

⇐⇒ 2x0x3 + 4x1x2 +
1

3
x20 + x21 + 3x23 = 0
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4.5 Metric invariants of a quadric Q

Let us consider the quadricQwith associated matrixA; this is,Q ≡ XTAX =

0. The following values are euclidean invariants of the quadric:

detA

Eigenvalues of A00: λ1, λ2, λ3 or equivalently:

detA00, trA00 = a11 + a22 + a33, J =

∣∣∣∣ a11 a12
a12 a22

∣∣∣∣ +

∣∣∣∣ a11 a13
a13 a33

∣∣∣∣ +

∣∣∣∣ a22 a23
a23 a33

∣∣∣∣
where

A =


a00 a01 a02 a03
a01 a11 a12 a13
a02 a12 a22 a23
a03 a13 a23 a33

 and A00 =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 .
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The following identities are satisfied:

detA00 = λ1λ2λ3

J = λ1λ2 + λ1λ3 + λ2λ3

trA00 = λ1 + λ2 + λ3

The charasteristic equation of A00 is:

|A00 − λI3| = −λ3 + trA00λ
2 − Jλ + detA00 = 0.

Therefore, λ1, λ2 and λ3 are the roots of the equation |A00 − λI3| = 0.

If detA00 6= 0, then the conic Q ∩ π∞ is regular and Q has a center.

If detA00 = 0, then the conic Q∩ π∞ is not regular. It is a quadric of parabol-
loid type, it may not have a center, have a line of centers or even have a
plane of centers.
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4.5.1 Classification of quadrics with detA00 6= 0.

Because of detA00 = λ1λ2λ3 6= 0, in certain coordinate system, the matrix of
the quadric is 

d0 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0 λ3


and, therefore, the reduced equation of the affine quadric (x0 = 0) is

d0 + λ1x
2
1 + λ2x

2
2 + λ3x

2
3 = 0

with d0 = detA
detA00

and they are quadrics with center.

If detA = d0λ1λ2λ3 6= 0 (this is, rank(A) = 4) then they are ordinary quadrics.
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We can distinguish two cases:

1. the eigenvalues of A00 have the same sign

2. two of the eigenvalues of A00 have the same sign and the other the
opposite sign.
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1. If sign(λ1) = sign(λ2) = sign(λ3) (+ + + o − − −), we say that A00 has
signature 3, sigA00 = 3, and we can encounter the following cases:

a) If sign(d0) = sign(λ1) = sign(λ2) = sign(λ3), then detA > 0 and the
reduced equation of the affine quadric is

1 = −x
2
1

a2
− x22
b2
− x23
c2

where a2 = d0/λ1, b2 = d0/λ2 and c2 = d0/λ3 (as the three of them
are positive) which is the equation of an imaginary ellipsoid .

b) If sign(d0) 6= sign(λ1) = sign(λ2) = sign(λ3), then detA < 0 and the
reduced equation of the affine quadric is

1 =
x21
a2

+
x22
b2

+
x23
c2

where a2 = −d0/λ1, b2 = −d0/λ2 and c2 = −d0/λ3 (as the three
of them are positive) which is the equation of an ellipsoid , and if
besides a2 = b2 = c2 we obtain a sphere.
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2. If sign(λ1) = sign(λ2) 6= sign(λ3) (+ + − o − − +) we say that A00 has
signature 1, sigA00 = 1, and we can encounter the following cases:

a) If sign(d0) 6= sign(λ1) = sign(λ2) 6= sign(λ3), then detA > 0 and the
reduced equation of the affine quadric is

1 =
x21
a2

+
x22
b2
− x23
c2

where a2 = −d0/λ1, b2 = −d0/λ2 and c2 = d0/λ3 (as the three of them
are positive) which is the equation of an hyperbolic hyperboloid .

b) If sign(d0) = sign(λ1) = sign(λ2) 6= sign(λ3), then detA < 0 and the
reduced equation of the quadric is

1 = −x
2
1

a2
− x22
b2

+
x23
c2

where a2 = d0/λ1, b2 = d0/λ2 and c2 = −d0/λ3 (as the three of them
are positive) which is the equation of an elliptic hyperboloid .
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If detA = d0λ1λ2λ3 = 0 (this is, d0 = 0 and rank(A) = 3) then they are
degenerate quadrics with reduced equation:

λ1x
2
1 + λ2x

2
2 + λ3x

2
3 = 0

We can distinguish two cases:

1. If sign(λ1) = sign(λ2) = sign(λ3), the reduced equation of the affine
quadric is

0 = λ1x
2
1 + λ2x

2
2 + λ3x

2
3

which is the equation of an imaginary cone.

2. If sign(λ1) = sign(λ2) 6= sign(λ3), the reduced equation of the affine
quadric is of the form

0 = a2x21 + b2x22 − c2x23

which is the equation of an cone.
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Table of classification of quadrics with center

detA00 6= 0



rank(A) = 4
Regular


sigA00 = 3

Ellipsoids

{
detA > 0 imaginary
detA < 0 real

sigA00 = 1
Hyperboloids

{
detA > 0 hyperbolic
detA < 0 elliptic

rank(A) = 3
Cones

{
sigA00 = 3 Imaginary cone with a real point
sigA00 = 1 Real cone
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4.5.2 Classification of the quadrics with detA00 = 0.

Because of detA00 = λ1λ2λ3 = 0, we can suppose λ3 = 0.
Hence J = λ1λ2.
In certain coordinate system the matrix of the quadric is

b00 0 0 b03
0 λ1 0 0

0 0 λ2 0

b03 0 0 0


with detA = −b203λ1λ2.
The reduced equation of the affine quadric is

0 = b00 + λ1x
2
1 + λ2x

2
2.
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If J = λ1λ2 6= 0 we can distinguish various cases:

1. If detA 6= 0 (this is, b03 6= 0) The reduced equation of the affine quadric
is

0 = 2b03x3 + λ1x
2
1 + λ2x

2
2

and we have:

a) If sign(λ1) = sign(λ2), this is J > 0, the reduced equation of the affine
quadric is of the form

0 = dx3 + a2x21 + b2x22

which is the equation of an elliptic paraboloid .

b) If sign(λ1) 6= sign(λ2), this is J < 0, the reduced equation of the affine
quadric is of the form

0 = dx3 + a2x21 − b2x22

which is the equation of an hyperbolic paraboloid .



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

2. If detA = 0 (this is, b03 = 0) the reduced equation of the affine quadric is

0 = b00 + λ1x
2
1 + λ2x

2
2

and we distinguish various cases:

a) If b00 6= 0 we have

1) If sign(λ1) = sign(λ2), this is J > 0, the reduced equation of the
affine quadric is of the form

0 = c + a2x21 + b2x22

which is the equation of an elliptic imaginary cylinder if c > 0 or
elliptic cylinder if c < 0.

2) If sign(λ1) 6= sign(λ2), this is J < 0, the reduced equation of the
affine quadric is of the form

0 = c + a2x21 − b2x22
which is the equation of a hyperbolic cylinder.
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b) If b00 = 0 the reduced equation of the quadric is

0 = λ1x
2
1 + λ2x

2
2.

1) If sign(λ1) = sign(λ2), this is J > 0, the affine quadric is a pair of
imaginary planes which intersect in a line.

2) If sign(λ1) 6= sign(λ2), this is J < 0, the affine quadric is a pair of
planes which intersect in a line.
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If two of the eigenvalues of A00 vanish (suppose λ2 = λ3 = 0), hence:
detA = 0, detA00 = 0, J = 0 and trA00 = λ1.

In certain coordinate system the matrix of the quadric is
b00 0 0 0

0 λ1 0 0

0 0 0 0

0 0 0 0


and the reduced equation of the quadric is

0 = b00 + λ1x
2
1.

1. If b00 6= 0 we have

a) If sign(b00) = sign(λ1), the reduced equation of the affine quadric is of
the form

0 = p2 + a2x21

and the affine quadric is a pair of imaginary parallel planes .
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b) If sign(b00) 6= sign(λ1), the reduced equation is of the form

0 = p2 − a2x21 = (p + ax1)(p− ax1)

and the affine quadric is a pair of parallel planes.
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Table of classification of quadrics with detA00 = 0

detA00 = 0



rank(A) = 4
Regular

{
J > 0 Elliptic paraboloid
J < 0 Hyperbolic paraboloid

rank(A) = 3
Cylinders


J > 0 Real elliptic cylinder
J < 0 Hyperbolic cylinder
J = 0 Parabolic cylinder

rank(A) = 2
Pair of planes


J > 0 Pair of imaginary planes (line)
J < 0 Pair of secant planes

J = 0 Pair of parallel planes

{
imaginary
real

rank(A) = 1 double plane


