AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

CHAPTER III: CONICS AND QUADRICS

Let $\mathbb{P}_3 = \mathbb{P}(\mathbb{R}^4)$ be the real projective tridimensional space.

Definition. A quadric \overline{Q} in \mathbb{P}_3 determined by a quadratic form $\omega \colon \mathbb{R}^4 \longrightarrow \mathbb{R}$ is the set of points of \mathbb{P}_3 defined by:

$$\overline{Q} = \{ X \in \mathbb{P}_3 \mid \omega(X) = 0 \}$$

Let $\mathcal{R} = \{O, B\}$ be a coordinate system in \mathbb{A}_3 and let

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{01} & a_{11} & a_{12} & a_{13} \\ a_{02} & a_{12} & a_{22} & a_{23} \\ a_{03} & a_{13} & a_{23} & a_{33} \end{pmatrix}$$

be the matrix associated to the quadratic form ω then

$$\overline{Q} = \{ X \in \mathbb{P}_3 \mid X^t A X = 0 \}$$
$$= \left\{ [(x_0, x_1, x_2, x_3)] \in \mathbb{P}_3 \mid \sum_{i=0}^3 \sum_{j=0}^3 a_{ij} x_i x_j = 0 \right\}$$

The affine quadric defined by the quadratic form ω is the subset Q of \mathbb{A}_3 defined by

$$Q = \{ X \in \mathbb{A}_3 \mid \omega(\tilde{X}) = 0 \},\$$

where $\tilde{X} = (1, x_1, x_2, x_3)$, with $(x_1, x_2, x_3) \in \mathbb{A}_3$. It is verified that $Q \subset \overline{Q}$.

4.1 Singular points and projective classification

Let \overline{Q} be a projective quadric determined by a quadratic form $\omega \colon \mathbb{R}^4 \longrightarrow \mathbb{R}$, with polar form $f \colon \mathbb{R}^4 \times \mathbb{R}^4 \longrightarrow \mathbb{R}$ and associated matrix A with respect to certain coordinate system.

Definitions.

- We say that two points $A, B \in \mathbb{P}_3$ are *conjugated* with respect to \overline{Q} if f(A, B) = 0.
- We say that a point $P \in \mathbb{P}_3$ is an *autoconjugated point* with respect to \overline{Q} if $\omega(P) = f(P, P) = 0$.
- We say that a point $P \in \mathbb{P}_3$ is a *singular point* of \overline{Q} if it is conjugated with every point of \mathbb{P}_3 ; this is, f(P, X) = 0 for every point $X \in \mathbb{P}_3$. This is, if

$$f(P,X) = P^T A X = 0, \ \forall X \in \mathbb{P}_3,$$

or equivalently,

$$P^T A = 0.$$

- We say that a point $P \in \mathbb{P}_3$ is a *regular point* of \overline{Q} if it is not a singular point
- The quadric Q is non degenerate, regular or ordinary if it does not have singular points.
- The quadric \overline{Q} is *degenerate or singular* if it has a singular point.

Observations: Let \overline{Q} be a projective quadric generated by a quadratic form ω , with polar form f and associated matrix A.

1. Let $sign(\overline{Q})$ be the set of singular points of \overline{Q} ; this is,

$$sign(\overline{Q}) = \{ X \in \mathbb{P}_3 \mid f(X, Y) = 0, \text{ for every } Y \in \mathbb{P}_3 \}$$
$$= \{ X \in \mathbb{P}_3 \mid AX = 0 \}.$$

We have

$$\dim(\operatorname{sign}(\overline{Q})) = 3 - \operatorname{rank}(A).$$

2. If $X \in \mathbb{P}_3$ is a singular point, then $X \in \overline{Q}$.

Proof. We have to check that $\omega(X) = 0$. We have $\omega(X) = f(X, X) = 0$ as X is conjugated with any point, in particular with itself.

3. The line determined by a singular point X and any other point of the quadric, $Y \in \overline{Q}$, is contained on the quadric.

Proof. As X is singular we know that $\omega(X) = 0$ and f(X,Y) = 0 and as Y belongs to the quadric $\omega(Y) = 0$. Any point of the line determined by X and Y has the form $Z = \lambda X + \mu Y$. We have to check whether $\omega(Z) = 0$. We have:

$$\begin{split} \omega(Z) &= \omega(\lambda X + \mu Y) = f(\lambda X + \mu Y, \lambda X + \mu Y) \\ &= f(\lambda X, \lambda X + \mu Y) + f(\mu Y, \lambda X + \mu Y) \\ &= f(\lambda X, \lambda X) + f(\lambda X, \mu Y) + f(\mu Y, \lambda X) + f(\mu Y, \mu Y) \\ &= \lambda^2 f(X, X) + 2\lambda \mu f(X, Y) + \mu^2 f(Y, Y) \\ &= \lambda^2 \underbrace{\omega(X)}_0 + 2\lambda \mu \underbrace{f(X, Y)}_0 + \mu^2 \underbrace{\omega(Y)}_0 = 0. \end{split}$$

4. All the points that belong to the line determined by two singular points are singular.

Proof. Let $Z = \lambda X + \mu Y$ be any point of the line formed by two singular points X and Y. We have to check that f(Z,T) = 0, for every $T \in \mathbb{P}_3$. We have:

$$f(Z,T) = f(\lambda X + \mu Y,T)$$

= $f(\lambda X,T) + f(\mu Y,T)$
= $\lambda \underbrace{f(X,T)}_{0} + \mu \underbrace{f(Y,T)}_{0} = 0.$

5. If the quadric \overline{Q} contains a singular point, then \overline{Q} is formed by lines that contain that point.

4.1.1 Projective classification

- 1. If det $A \neq 0$, then the quadric \overline{Q} is *ordinary or not degenerate*.
- 2. If det A = 0, then the quadric \overline{Q} is *degenerate*.
 - a) If rank(A) = 3, then \overline{Q} has an unique singular point P.
 - If P is a proper point, then \overline{Q} is a *cone* with vertex P.
 - If P is an improper point, then \overline{Q} is a *cylinder*.
 - b) If rank(A) = 2, then \overline{Q} has a line of singular points and \overline{Q} is a *pair of planes* with intersection the line of singular points.
 - c) If rank(A) = 1, then \overline{Q} has a plane of singular points and \overline{Q} is a *double plane*.

4.2 Polarity defined by a quadric

Let \overline{Q} be a quadric with polar form f and associated matrix A. Let us consider $P \in \mathbb{P}_3$, we call *polar variety* of P with respect to the quadric \overline{Q} to the set of conjugated points of P; this is,

$$V_P = \{ X \in \mathbb{P}_3 \mid f(P, X) = 0 \} \\ = \{ X \in \mathbb{P}_3 \mid P^t A X = 0 \}.$$

If $P \in \mathbb{P}_3$ is a singular points, then $V_P = \mathbb{P}_3$.

If $P \in \mathbb{P}_3$ is not a singular point, then V_P is a plane π_P and we call it *polar* plane of *P* with respect to the quadric \overline{Q} :

$$\pi_P = \{ X \in \mathbb{P}_3 \mid P^t A X = 0 \}.$$

Definition. Given a plane π of the space \mathbb{P}_3 , we call *pole* of the plane π with respect to the quadric \overline{Q} to the point whose polar plane is π ; this is, $\pi_P = \pi$.

If the equation of the plane π is

$$\pi \equiv u_0 x_0 + u_1 x_1 + u_2 x_2 + u_3 x_3 = U^T X = 0,$$

with $U = (u_0, u_1, u_2, u_3)$ and $X = (x_0, x_1, x_2, x_3),$

then $\pi_P = \pi$ if and only if

$$P^T A X = U^T X$$
, for every $X \in \mathbb{P}_3$

equivalently,

$$P^T A = U^T \iff A P = U.$$

And if the quadric \overline{Q} is not degenerate (therefore, det $A \neq 0$), then $P = A^{-1}U$.

Theorem. If the point P belongs to the polar plane of a point R, then the point R is in the polar plane of P.

This is due to the condition of conjugation f(P, R) = 0; it is symmetric in P and R.

As we have seen, given a quadric \overline{Q} , every non sigular point *P* is assigned a plane (its polar plane) and reciprocally, each plane π is assigned a point (its pole).

Definition. We call *polarity defined by a quadric* \overline{Q} to the transformation in which each non singular point of \overline{Q} is assigned to its polar plane. This is,

$$\mathbb{P}_3 \searrow \operatorname{sign}(\overline{Q}) \longrightarrow \mathsf{Planes of } \mathbb{P}_3$$
$$P \longmapsto \pi_P$$

Fundamental theorem of polarity

The polar planes of the points of a plane π of \mathbb{P}_3 , with respect to a regular quadric \overline{Q} , contain the same point which is precisely the pole of π .

4.3 Intersection between line and quadric

Let \overline{Q} be a projective quadric with polar form f and associated matrix A. Let r be the projective line which contains the independent points $P = [(p_0, p_1, p_2, p_3)]$ and $Q = [(q_0, q_1, q_2, q_3)]$.

A point $X \in \mathbb{P}_3$ is in the intersection between the conic and the line if and only if:

$$\begin{cases} X \in r \\ X \in \overline{Q} \end{cases} \iff \begin{cases} X = \lambda P + \mu Q \\ \omega(X) = 0 \end{cases} \iff \begin{cases} X = \lambda P + \mu Q \\ \omega(\lambda P + \mu Q) = 0 \end{cases}$$

The condition $\omega(\lambda P + \mu Q) = 0$ is written:

$$0 = \lambda^2 \omega(P) + 2\lambda \mu f(P, Q) + \mu^2 \omega(Q).$$

Dividing the former equation by μ^2 and writing $t = \lambda/\mu$ we obtain the following second degree equation:

$$0 = \omega(P)t^2 + 2f(P,Q)t + \omega(Q)$$

with discriminant

$$\Delta = f(P,Q)^2 - \omega(P)\omega(Q).$$

- If f(P,Q) = 0, $\omega(P) = 0$ and $\omega(Q) = 0$, then $P,Q \in \overline{Q}$ and, therefore, $r \subset \overline{Q}$.
- If not all the coefficients of the second degree equation $0 = \omega(P)t^2 + 2f(P,Q)t + \omega(Q)$ are zero, then there are two intersection points (the two solutions of the equation).
 - 1. If $\Delta = f(P,Q)^2 \omega(P)\omega(Q) > 0$, the line, and the quadric intersect in two different real points. The line is called *secant line* to the quadric.
 - 2. If $\Delta = f(P,Q)^2 \omega(P)\omega(Q) = 0$, the line and the quadric intersect in a double point. The line is called *tangent line* to the quadric.
 - 3. If $\Delta = f(P,Q)^2 \omega(P)\omega(Q) < 0$, the line and the conic intersect in two different improper points. The line is called *exterior line* to the quadric.

4.3.1 Tangent variety to a quadric

Definition. The *tangent variety* to a quadric \overline{Q} in a point $P \in \mathbb{P}_3$, is the set of points $X \in \mathbb{P}_3$ such that the line that joins P and X is tangent to the quadric \overline{Q} ; this is,

$$T_P \overline{Q} = \{ X \in \mathbb{P}_3 \mid \text{line } XP \text{ is tangent to } \overline{Q} \} \\ = \{ X \in \mathbb{P}_3 \mid \Delta = f(P, X)^2 - \omega(P)\omega(X) = 0 \} \\ = \{ X \in \mathbb{P}_3 \mid f(P, X)^2 = \omega(P)\omega(X) \}.$$

Observations.

- 1. $T_P\overline{Q}$ is a degenerate quadric which has P as singular point.
- 2. If $P \in \overline{Q}$ is a regular point, then

$$T_P \overline{Q} = \{ X \in \mathbb{P}_3 \mid f(P, X)^2 = 0 \}$$
$$= \{ X \in \mathbb{P}_3 \mid P^t A X = 0 \}$$

is a plane, called *the tangent plane to* \overline{Q} *in* P. In fact, it is the polar plane of the point P; this is, $T_P\overline{Q} = \pi_p$.

3. If $P \in \overline{Q}$ is a singular point, then $T_P \overline{Q} = \mathbb{P}_3$.

4.4 Affine classification and notable elements of quadrics

Let $\overline{\mathbb{A}}_3 = \mathbb{P}(\mathbb{R}^4)$ be the projectivized affine space, with coordinate system $\mathcal{R} = \{O, B\}$. And let ω be a quadratic form with associated matrix A. Let

$$\overline{Q} = \{ X \in \mathbb{P}_3(\mathbb{R}^4) \mid \omega(X) = 0 \}$$

be a projective quadric with affine quadric

$$Q = \overline{Q} \cap \mathbb{A}_3 = \{ X \in \mathbb{A}_3 \mid \omega(\tilde{X}) = 0 \}, \text{ where } \tilde{X} = (1, x_1, x_2, x_3).$$

4.4.1 Center of an affine quadric

Definition. We call *center* of an affine quadric Q to the pole of the plane at infinity, if it exists. If that point is contained in the plane at infinity then the quadric has an improper center, otherwise a proper center.

The equation of the plane at infinity is $x_0 = 0$ and the equation of the quadric is $X^t A X = 0$. Therefore, the pole of the plane at infinity is the point P such that $P^t A = (1, 0, 0, 0)$.

Proposition. The proper center of an affine quadric is the center of symmetry. Any line that contains the center of a quadric intersects the quadric in two symmetric points with respect to the center.

4.4.2 Relative position of the quadric and the plane at infinity

Let $\pi_{\infty} \equiv x_0 = 0$ be the equation of the plane at infinity and let us consider the projective quadric \overline{Q} determined by a quadratic form ω and with associated matrix

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{01} & a_{11} & a_{12} & a_{13} \\ a_{02} & a_{12} & a_{22} & a_{23} \\ a_{03} & a_{13} & a_{23} & a_{33} \end{pmatrix}$$

We have:

$$\overline{Q} \cap \pi_{\infty} = \{ X \in \pi_{\infty} \mid \omega(X) = 0 \} = \{ (0, x_1, x_2, x_3) \mid X^t A X = 0 \}$$

this is,

$$\overline{Q} \cap \pi_{\infty} \equiv a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3 = 0,$$

then $\overline{Q} \cap \pi_{\infty}$ is a conic of the plane at infinity π_{∞} with matrix

$$A_{00} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Proposition. The quadric \overline{Q} has a center if and only if det $A_{00} \neq 0$. Besides,

- If det $A_{00} \neq 0$, then the conic $\overline{Q} \cap \pi_{\infty}$ is regular and \overline{Q} has a center.
- If det $A_{00} = 0$, then the conic $\overline{Q} \cap \pi_{\infty}$ is degenerate and \overline{Q} has no center.

4.4.3 Diameters of a quadric

Definition. We call *diameter* of a quadric \overline{Q} to every line that contains the center of \overline{Q} .

Definition. We call *diametral plane* of a quadric \overline{Q} to the planes that contain the center of \overline{Q} .

Definition. Two diameters D and D' are said *conjugated* if their improper points are conjugated.

Definition. We call *diametral polar plane of a diameter* D to the polar plane of the improper point of D.

4.4.4 Axes of a quadric with proper center

Definition. We call *axis* of a quadric \overline{Q} to the diameter which is perpendicular to its diametral polar plane.

Let \overline{Q} be a projective quadric with associated matrix A. And let A_{00} be the matrix of the conic $\overline{Q} \cap \pi_{\infty}$.

As \overline{Q} has a proper center Z, the matrix A_{00} is not singular, so its three eigenvalues are not zero λ_1, λ_2 and λ_3 .

Let v_1, v_2 and v_3 be the eigenvectors associated to λ_1, λ_2 and λ_3 respectively (we choose the eigenvectors which are orthogonal two by two).

The axes of \overline{Q} are the lines that contain the center, Z, and have as directions the vectors v_1, v_2 and v_3 , respectively.

The coordinate system $\mathcal{R} = \{Z, \{v_1, v_2, v_3\}\}$ gives us a cartesian autoconjugated coordinate system.

We can find three situations:

- 1. The three eigenvalues are different. Then \overline{Q} has three axes which are orthogonal two by two.
- 2. An eigenvalue is double, $\lambda_1 = \lambda_2$, and the other, λ_3 , is simple. Then the dimension of the subspace of eigenvectors associated to the double eigenvalue is dim $V_1 = 2$ and dim $V_3 = 1$. Then V_1 is a plane of axes perpendicular to the axis V_3 . In this case the quadric \overline{Q} is a revolution quadric, whose axis is the one that corresponds to the eigenvalue λ_3 .
- 3. The three eigenvalues are the same, $\lambda_1 = \lambda_2 = \lambda_3$. Then any diameter is the axis and the quadric is a sphere.

Definition. We call *main planes* of a quadric \overline{Q} to the diametral polar planes of the axes.

4.4.5 Asymptotic cones

Definition. We call *asymptotes* of a quadric \overline{Q} to the tangents of a conic in its improper points.

Let \overline{Q} be a projective quadric with proper center Z.

Definition. The tangent variety to the quadric \overline{Q} from the center $Z[(z_0, z_1, z_2, z_3)]$ is a cone that is called *asymptotic cone*. The equation of the asymptotic cone is the following one:

$$f(Z,X)^2 - \omega(Z)\omega(X) = 0 \iff (Z^tAX)(Z^tAX) - (Z^tAZ)(X^tAX) = 0$$
$$\iff x_0^2 - z_0(X^tAX) = 0$$
$$\iff x_0^2 - \frac{\det A_{00}}{\det A}(X^tAX) = 0$$

equivalently

$$\frac{\det A}{\det A_{00}}x_0^2 - \overline{Q} = 0.$$

The quadrics of ellyptic type have an imaginary asymptotic cone and the quadrics of hyperbolic type have a real asymptotic cone.

The *generatrixs* of the cone (lines of the cone) are the diameters tangent to the quadric.

We call *asymptotic plane* to the polar planes of the points of the improper conic of \overline{Q} ($\overline{Q} \cap \pi_{\infty} = C$) (if there exists any).

Example 1. Let us consider the quadric $Q \equiv x_1^2 + 3x_3^2 + 4x_1x_2 + 2x_3 + 2 = 0$. The matrix of Q is:

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}$$

The determinant of A is det A = -20, quadric with proper center:

$$\left(\begin{array}{cccc} z_0 & z_1 & z_2 & z_3\end{array}\right) \left(\begin{array}{cccc} 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 3\end{array}\right) = \rho \left(\begin{array}{cccc} 1 & 0 & 0 & 0\end{array}\right),$$

this is

$$\begin{cases} 2z_0 + z_3 = \rho \\ z_1 + 2z_2 = 0 \\ 2z_1 = 0 \\ z_0 + 3z_3 = 0 \end{cases}$$

The center is: Z[(1, 0, 0, -1/3)]. Equation of the asymptotic cone:

$$\frac{\det A}{\det A_{00}}x_0^2 - \overline{Q} = 0 \iff \frac{20}{12}x_0^2 - (x_1^2 + 3x_3^2 + 4x_1x_2 + 2x_3x_0 + 2x_0^2) = 0$$
$$\iff 2x_0x_3 + 4x_1x_2 + \frac{1}{3}x_0^2 + x_1^2 + 3x_3^2 = 0$$

4.5 Metric invariants of a quadric Q

Let us consider the quadric \overline{Q} with associated matrix A; this is, $\overline{Q} \equiv X^T A X = 0$. The following values are euclidean invariants of the quadric:

- $\det A$
- Eigenvalues of A_{00} : $\lambda_1, \lambda_2, \lambda_3$ or equivalently:

det
$$A_{00}$$
, tr $A_{00} = a_{11} + a_{22} + a_{33}$, $J = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix}$

where

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{01} & a_{11} & a_{12} & a_{13} \\ a_{02} & a_{12} & a_{22} & a_{23} \\ a_{03} & a_{13} & a_{23} & a_{33} \end{pmatrix} \text{ and } A_{00} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

The following identities are satisfied:

- det $A_{00} = \lambda_1 \lambda_2 \lambda_3$
- $\bullet J = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3$
- tr $A_{00} = \lambda_1 + \lambda_2 + \lambda_3$

The charasteristic equation of A_{00} is:

$$|A_{00} - \lambda I_3| = -\lambda^3 + \operatorname{tr} A_{00}\lambda^2 - J\lambda + \det A_{00} = 0.$$

Therefore, λ_1, λ_2 and λ_3 are the roots of the equation $|A_{00} - \lambda I_3| = 0$.

If det $A_{00} \neq 0$, then the conic $\overline{Q} \cap \pi_{\infty}$ is regular and \overline{Q} has a center. If det $A_{00} = 0$, then the conic $\overline{Q} \cap \pi_{\infty}$ is not regular. It is a quadric of parabolloid type, it may not have a center, have a line of centers or even have a

plane of centers.

4.5.1 Classification of quadrics with det $A_{00} \neq 0$.

Because of det $A_{00} = \lambda_1 \lambda_2 \lambda_3 \neq 0$, in certain coordinate system, the matrix of the quadric is

(d_0	0	0	0
	0	λ_1	0	0
	0	0	λ_2	0
	0	0	0	λ_3

and, therefore, the reduced equation of the affine quadric ($x_0 = 0$) is

$$d_0 + \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 = 0$$

with $d_0 = \frac{\det A}{\det A_{00}}$ and they are quadrics *with center*. If $\det A = d_0 \lambda_1 \lambda_2 \lambda_3 \neq 0$ (this is, $\operatorname{rank}(A) = 4$) then they are *ordinary* quadrics. We can distinguish two cases:

- 1. the eigenvalues of A_{00} have the same sign
- 2. two of the eigenvalues of A_{00} have the same sign and the other the opposite sign.

- 1. If $\operatorname{sign}(\lambda_1) = \operatorname{sign}(\lambda_2) = \operatorname{sign}(\lambda_3)$ (+ + + o - -), we say that A_{00} has *signature* 3, sig $A_{00} = 3$, and we can encounter the following cases:
 - a) If $sign(d_0) = sign(\lambda_1) = sign(\lambda_2) = sign(\lambda_3)$, then det A > 0 and the reduced equation of the affine quadric is

$$1 = -\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2}$$

where $a^2 = d_0/\lambda_1$, $b^2 = d_0/\lambda_2$ and $c^2 = d_0/\lambda_3$ (as the three of them are positive) which is the equation of an *imaginary ellipsoid*.

b) If $sign(d_0) \neq sign(\lambda_1) = sign(\lambda_2) = sign(\lambda_3)$, then det A < 0 and the reduced equation of the affine quadric is

$$1 = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2}$$

where $a^2 = -d_0/\lambda_1$, $b^2 = -d_0/\lambda_2$ and $c^2 = -d_0/\lambda_3$ (as the three of them are positive) which is the equation of an *ellipsoid*, and if besides $a^2 = b^2 = c^2$ we obtain a *sphere*.

- 2. If $\operatorname{sign}(\lambda_1) = \operatorname{sign}(\lambda_2) \neq \operatorname{sign}(\lambda_3)$ (+ + o - +) we say that A_{00} has *signature* 1, $\operatorname{sig} A_{00} = 1$, and we can encounter the following cases:
 - a) If $\operatorname{sign}(d_0) \neq \operatorname{sign}(\lambda_1) = \operatorname{sign}(\lambda_2) \neq \operatorname{sign}(\lambda_3)$, then $\det A > 0$ and the reduced equation of the affine quadric is

$$1 = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2}$$

where $a^2 = -d_0/\lambda_1$, $b^2 = -d_0/\lambda_2$ and $c^2 = d_0/\lambda_3$ (as the three of them are positive) which is the equation of an *hyperbolic hyperboloid*.

b) If $sign(d_0) = sign(\lambda_1) = sign(\lambda_2) \neq sign(\lambda_3)$, then det A < 0 and the reduced equation of the quadric is

$$a = -\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2}$$

where $a^2 = d_0/\lambda_1$, $b^2 = d_0/\lambda_2$ and $c^2 = -d_0/\lambda_3$ (as the three of them are positive) which is the equation of an *elliptic hyperboloid*.

If det $A = d_0\lambda_1\lambda_2\lambda_3 = 0$ (this is, $d_0 = 0$ and rank(A) = 3) then they are *degenerate* quadrics with reduced equation:

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 = 0$$

We can distinguish two cases:

1. If ${\rm sign}(\lambda_1)={\rm sign}(\lambda_2)={\rm sign}(\lambda_3),$ the reduced equation of the affine quadric is

$$0 = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2$$

which is the equation of an *imaginary cone*.

2. If $sign(\lambda_1) = sign(\lambda_2) \neq sign(\lambda_3)$, the reduced equation of the affine quadric is of the form

$$0 = a^2 x_1^2 + b^2 x_2^2 - c^2 x_3^2$$

which is the equation of an *cone*.

Table of classification of quadrics with center

$$\det A_{00} \neq 0 \begin{cases} \operatorname{rank}(A) = 4 \\ \operatorname{Regular} \\ \operatorname{rank}(A) = 3 \\ \operatorname{Cones} \end{cases} \begin{cases} \operatorname{sig} A_{00} = 3 \\ \operatorname{sig} A_{00} = 3 \\ \operatorname{det} A < 0 \end{cases} \begin{cases} \det A > 0 & \text{hyperbolic} \\ \det A < 0 & \text{elliptic} \\ \operatorname{det} A < 0 & \text{elliptic} \end{cases}$$

4.5.2 Classification of the quadrics with $\det A_{00} = 0$.

Because of det $A_{00} = \lambda_1 \lambda_2 \lambda_3 = 0$, we can suppose $\lambda_3 = 0$. Hence $J = \lambda_1 \lambda_2$.

In certain coordinate system the matrix of the quadric is

$$\left(\begin{array}{ccccc} b_{00} & 0 & 0 & b_{03} \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ b_{03} & 0 & 0 & 0 \end{array}\right)$$

with det $A = -b_{03}^2 \lambda_1 \lambda_2$. The reduced equation of the affine quadric is

$$0 = b_{00} + \lambda_1 x_1^2 + \lambda_2 x_2^2.$$

If $J = \lambda_1 \lambda_2 \neq 0$ we can distinguish various cases:

1. If det $A \neq 0$ (this is, $b_{03} \neq 0$) The reduced equation of the affine quadric is

$$0 = 2b_{03}x_3 + \lambda_1 x_1^2 + \lambda_2 x_2^2$$

and we have:

a) If $sign(\lambda_1) = sign(\lambda_2)$, this is J > 0, the reduced equation of the affine quadric is of the form

$$0 = dx_3 + a^2 x_1^2 + b^2 x_2^2$$

which is the equation of an *elliptic paraboloid*.

b) If $sign(\lambda_1) \neq sign(\lambda_2)$, this is J < 0, the reduced equation of the affine quadric is of the form

$$0 = dx_3 + a^2 x_1^2 - b^2 x_2^2$$

which is the equation of an hyperbolic paraboloid.

2. If det A = 0 (this is, $b_{03} = 0$) the reduced equation of the affine quadric is

 $0 = b_{00} + \lambda_1 x_1^2 + \lambda_2 x_2^2$

and we distinguish various cases:

a) If $b_{00} \neq 0$ we have

1) If $sign(\lambda_1) = sign(\lambda_2)$, this is J > 0, the reduced equation of the affine quadric is of the form

$$0 = c + a^2 x_1^2 + b^2 x_2^2$$

which is the equation of an *elliptic imaginary cylinder* if c > 0 or *elliptic cylinder* if c < 0.

2) If $sign(\lambda_1) \neq sign(\lambda_2)$, this is J < 0, the reduced equation of the affine quadric is of the form

$$0 = c + a^2 x_1^2 - b^2 x_2^2$$

which is the equation of a hyperbolic cylinder.

b) If $b_{00} = 0$ the reduced equation of the quadric is

$$0 = \lambda_1 x_1^2 + \lambda_2 x_2^2.$$

- 1) If $sign(\lambda_1) = sign(\lambda_2)$, this is J > 0, the affine quadric is a *pair of imaginary planes which intersect in a line*.
- 2) If $sign(\lambda_1) \neq sign(\lambda_2)$, this is J < 0, the affine quadric is a *pair of planes which intersect in a line*.

If two of the eigenvalues of A_{00} vanish (suppose $\lambda_2 = \lambda_3 = 0$), hence: det A = 0, det $A_{00} = 0$, J = 0 and tr $A_{00} = \lambda_1$.

In certain coordinate system the matrix of the quadric is

(b_{00}	0	0	0
	0	λ_1	0	0
	0	0	0	0
	0	0	0	0
· /				

and the reduced equation of the quadric is

$$0 = b_{00} + \lambda_1 x_1^2.$$

1. If $b_{00} \neq 0$ we have

a) If $\operatorname{sign}(b_{00}) = \operatorname{sign}(\lambda_1)$, the reduced equation of the affine quadric is of the form

$$0 = p^2 + a^2 x_1^2$$

and the affine quadric is a pair of imaginary parallel planes .

b) If $sign(b_{00}) \neq sign(\lambda_1)$, the reduced equation is of the form

$$0 = p^{2} - a^{2}x_{1}^{2} = (p + ax_{1})(p - ax_{1})$$

and the affine quadric is a *pair of parallel planes*.

Table of classification of quadrics with $\det A_{00} = 0$

$$\det A_{00} = 0 \begin{cases} \operatorname{rank}(A) = 4 \begin{cases} J > 0 & \text{Elliptic paraboloid} \\ J < 0 & \text{Hyperbolic paraboloid} \\ \operatorname{rank}(A) = 3 \begin{cases} J > 0 & \text{Real elliptic cylinder} \\ J < 0 & \text{Hyperbolic cylinder} \\ J = 0 & \text{Parabolic cylinder} \\ \end{bmatrix} \\ \operatorname{rank}(A) = 2 \begin{cases} J > 0 & \text{Pair of imaginary planes (line)} \\ J < 0 & \text{Pair of secant planes} \\ \end{bmatrix} \\ \operatorname{rank}(A) = 1 & \text{double plane} \end{cases} \end{cases}$$