CHAPTER III: CONICS AND QUADRICS

4. QUADRICS

Let $\mathbb{P}_{3}=\mathbb{P}\left(\mathbb{R}^{4}\right)$ be the real projective tridimensional space.
Definition. A quadric \bar{Q} in \mathbb{P}_{3} determined by a quadratic form $\omega: \mathbb{R}^{4} \longrightarrow \mathbb{R}$ is the set of points of \mathbb{P}_{3} defined by:

$$
\bar{Q}=\left\{X \in \mathbb{P}_{3} \mid \omega(X)=0\right\}
$$

Let $\mathcal{R}=\{O, B\}$ be a coordinate system in \mathbb{A}_{3} and let

$$
A=\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{01} & a_{11} & a_{12} & a_{13} \\
a_{02} & a_{12} & a_{22} & a_{23} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

be the matrix associated to the quadratic form ω then

$$
\begin{aligned}
\bar{Q} & =\left\{X \in \mathbb{P}_{3} \mid X^{t} A X=0\right\} \\
& =\left\{\left[\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right] \in \mathbb{P}_{3} \mid \sum_{i=0}^{3} \sum_{j=0}^{3} a_{i j} x_{i} x_{j}=0\right\}
\end{aligned}
$$

The affine quadric defined by the quadratic form ω is the subset Q of \mathbb{A}_{3} defined by

$$
Q=\left\{X \in \mathbb{A}_{3} \mid \omega(\tilde{X})=0\right\},
$$

where $\tilde{X}=\left(1, x_{1}, x_{2}, x_{3}\right)$, with $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{A}_{3}$. It is verified that $Q \subset \bar{Q}$.

4.1 Singular points and projective classification

Let \bar{Q} be a projective quadric determined by a quadratic form $\omega: \mathbb{R}^{4} \longrightarrow \mathbb{R}$, with polar form $f: \mathbb{R}^{4} \times \mathbb{R}^{4} \longrightarrow \mathbb{R}$ and associated matrix A with respect to certain coordinate system.

Definitions.

- We say that two points $A, B \in \mathbb{P}_{3}$ are conjugated with respect to \bar{Q} if $f(A, B)=0$.
- We say that a point $P \in \mathbb{P}_{3}$ is an autoconjugated point with respect to \bar{Q} if $\omega(P)=f(P, P)=0$.
- We say that a point $P \in \mathbb{P}_{3}$ is a singular point of \bar{Q} if it is conjugated with every point of \mathbb{P}_{3}; this is, $f(P, X)=0$ for every point $X \in \mathbb{P}_{3}$. This is, if

$$
f(P, X)=P^{T} A X=0, \forall X \in \mathbb{P}_{3},
$$

or equivalently,

$$
P^{T} A=0 .
$$

- We say that a point $P \in \mathbb{P}_{3}$ is a regular point of \bar{Q} if it is not a singular point
- The quadric \bar{Q} is non degenerate, regular or ordinary if it does not have singular points.
- The quadric \bar{Q} is degenerate or singular if it has a singular point.

Observations: Let \bar{Q} be a projective quadric generated by a quadratic form ω, with polar form f and associated matrix A.

1. Let $\operatorname{sign}(\bar{Q})$ be the set of singular points of \bar{Q}; this is,

$$
\begin{aligned}
\operatorname{sign}(\bar{Q}) & =\left\{X \in \mathbb{P}_{3} \mid f(X, Y)=0, \text { for every } Y \in \mathbb{P}_{3}\right\} \\
& =\left\{X \in \mathbb{P}_{3} \mid A X=0\right\} .
\end{aligned}
$$

We have

$$
\operatorname{dim}(\operatorname{sign}(\bar{Q}))=3-\operatorname{rank}(A)
$$

2. If $X \in \mathbb{P}_{3}$ is a singular point, then $X \in \bar{Q}$.

Proof. We have to check that $\omega(X)=0$. We have $\omega(X)=f(X, X)=0$ as X is conjugated with any point, in particular with itself.
3. The line determined by a singular point X and any other point of the quadric, $Y \in \bar{Q}$, is contained on the quadric.
Proof. As X is singular we know that $\omega(X)=0$ and $f(X, Y)=0$ and as Y belongs to the quadric $\omega(Y)=0$. Any point of the line determined by X and Y has the form $Z=\lambda X+\mu Y$. We have to check whether $\omega(Z)=0$. We have:

$$
\begin{aligned}
\omega(Z) & =\omega(\lambda X+\mu Y)=f(\lambda X+\mu Y, \lambda X+\mu Y) \\
& =f(\lambda X, \lambda X+\mu Y)+f(\mu Y, \lambda X+\mu Y) \\
& =f(\lambda X, \lambda X)+f(\lambda X, \mu Y)+f(\mu Y, \lambda X)+f(\mu Y, \mu Y) \\
& =\lambda^{2} f(X, X)+2 \lambda \mu f(X, Y)+\mu^{2} f(Y, Y) \\
& =\lambda^{2} \underbrace{\omega(X)}_{0}+2 \lambda \mu \underbrace{f(X, Y)}_{0}+\mu^{2} \underbrace{\omega(Y)}_{0}=0 .
\end{aligned}
$$

4. All the points that belong to the line determined by two singular points are singular.

Proof. Let $Z=\lambda X+\mu Y$ be any point of the line formed by two singular points X and Y. We have to check that $f(Z, T)=0$, for every $T \in \mathbb{P}_{3}$. We have:

$$
\begin{aligned}
f(Z, T) & =f(\lambda X+\mu Y, T) \\
& =f(\lambda X, T)+f(\mu Y, T) \\
& =\lambda \underbrace{f(X, T)}_{0}+\mu \underbrace{f(Y, T)}_{0}=0 .
\end{aligned}
$$

5. If the quadric \bar{Q} contains a singular point, then \bar{Q} is formed by lines that contain that point.

4.1.1 Projective classification

1. If $\operatorname{det} A \neq 0$, then the quadric \bar{Q} is ordinary or not degenerate.
2. If $\operatorname{det} A=0$, then the quadric \bar{Q} is degenerate.
a) If $\operatorname{rank}(A)=3$, then \bar{Q} has an unique singular point P.

- If P is a proper point, then \bar{Q} is a cone with vertex P.
- If P is an improper point, then \bar{Q} is a cylinder.
b) If $\operatorname{rank}(A)=2$, then \bar{Q} has a line of singular points and \bar{Q} is a pair of planes with intersection the line of singular points.
c) If $\operatorname{rank}(A)=1$, then \bar{Q} has a plane of singular points and \bar{Q} is a double plane.

4.2 Polarity defined by a quadric

Let \bar{Q} be a quadric with polar form f and associated matrix A. Let us consider $P \in \mathbb{P}_{3}$, we call polar variety of P with respect to the quadric \bar{Q} to the set of conjugated points of P; this is,

$$
\begin{aligned}
V_{P} & =\left\{X \in \mathbb{P}_{3} \mid f(P, X)=0\right\} \\
& =\left\{X \in \mathbb{P}_{3} \mid P^{t} A X=0\right\} .
\end{aligned}
$$

If $P \in \mathbb{P}_{3}$ is a singular points, then $V_{P}=\mathbb{P}_{3}$.
If $P \in \mathbb{P}_{3}$ is not a singular point, then V_{P} is a plane π_{P} and we call it polar plane of P with respect to the quadric \bar{Q} :

$$
\pi_{P}=\left\{X \in \mathbb{P}_{3} \mid P^{t} A X=0\right\} .
$$

Definition. Given a plane π of the space \mathbb{P}_{3}, we call pole of the plane π with respect to the quadric \bar{Q} to the point whose polar plane is π; this is, $\pi_{P}=\pi$. If the equation of the plane π is

$$
\begin{aligned}
\pi & \equiv u_{0} x_{0}+u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=U^{T} X=0 \\
\text { with } U & =\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \text { and } X=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

then $\pi_{P}=\pi$ if and only if

$$
P^{T} A X=U^{T} X, \text { for every } X \in \mathbb{P}_{3}
$$

equivalently,

$$
P^{T} A=U^{T} \Longleftrightarrow A P=U
$$

And if the quadric \bar{Q} is not degenerate (therefore, $\operatorname{det} A \neq 0$), then $P=$ $A^{-1} U$.

Theorem. If the point P belongs to the polar plane of a point R, then the point R is in the polar plane of P.

This is due to the condition of conjugation $f(P, R)=0$; it is symmetric in P and R.

As we have seen, given a quadric \bar{Q}, every non sigular point P is assigned a plane (its polar plane) and reciprocally, each plane π is assigned a point (its pole).

Definition. We call polarity defined by a quadric \bar{Q} to the transformation in which each non singular point of \bar{Q} is assigned to its polar plane. This is,

$$
\begin{aligned}
\mathbb{P}_{3} \backslash \operatorname{sign}(\bar{Q}) & \longrightarrow \text { Planes of } \mathbb{P}_{3} \\
P & \longmapsto \pi_{P}
\end{aligned}
$$

Fundamental theorem of polarity
The polar planes of the points of a plane π of \mathbb{P}_{3}, with respect to a regular quadric \bar{Q}, contain the same point which is precisely the pole of π.

4.3 Intersection between line and quadric

Let \bar{Q} be a projective quadric with polar form f and associated matrix A. Let r be the projective line which contains the independent points $P=$ $\left[\left(p_{0}, p_{1}, p_{2}, p_{3}\right)\right]$ and $Q=\left[\left(q_{0}, q_{1}, q_{2}, q_{3}\right)\right]$.
A point $X \in \mathbb{P}_{3}$ is in the intersection between the conic and the line if and only if:

$$
\left\{\begin{array} { l }
{ X \in r } \\
{ X \in \overline { Q } }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ X = \lambda P + \mu Q } \\
{ \omega (X) = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
X=\lambda P+\mu Q \\
\omega(\lambda P+\mu Q)=0
\end{array}\right.\right.\right.
$$

The condition $\omega(\lambda P+\mu Q)=0$ is written:

$$
0=\lambda^{2} \omega(P)+2 \lambda \mu f(P, Q)+\mu^{2} \omega(Q)
$$

Dividing the former equation by μ^{2} and writing $t=\lambda / \mu$ we obtain the following second degree equation:

$$
0=\omega(P) t^{2}+2 f(P, Q) t+\omega(Q)
$$

with discriminant

$$
\Delta=f(P, Q)^{2}-\omega(P) \omega(Q) .
$$

- If $f(P, Q)=0, \omega(P)=0$ and $\omega(Q)=0$, then $P, Q \in \bar{Q}$ and, therefore, $r \subset \bar{Q}$.
- If not all the coefficients of the second degree equation $0=\omega(P) t^{2}+$ $2 f(P, Q) t+\omega(Q)$ are zero, then there are two intersection points (the two solutions of the equation).

1. If $\Delta=f(P, Q)^{2}-\omega(P) \omega(Q)>0$, the line, and the quadric intersect in two different real points. The line is called secant line to the quadric.
2. If $\Delta=f(P, Q)^{2}-\omega(P) \omega(Q)=0$, the line and the quadric intersect in a double point. The line is called tangent line to the quadric.
3. If $\Delta=f(P, Q)^{2}-\omega(P) \omega(Q)<0$, the line and the conic intersect in two different improper points. The line is called exterior line to the quadric.

4.3.1 Tangent variety to a quadric

Definition. The tangent variety to a quadric \bar{Q} in a point $P \in \mathbb{P}_{3}$, is the set of points $X \in \mathbb{P}_{3}$ such that the line that joins P and X is tangent to the quadric \bar{Q}; this is,

$$
\begin{aligned}
T_{P} \bar{Q} & =\left\{X \in \mathbb{P}_{3} \mid \text { line } X P \text { is tangent to } \bar{Q}\right\} \\
& =\left\{X \in \mathbb{P}_{3} \mid \Delta=f(P, X)^{2}-\omega(P) \omega(X)=0\right\} \\
& =\left\{X \in \mathbb{P}_{3} \mid f(P, X)^{2}=\omega(P) \omega(X)\right\} .
\end{aligned}
$$

Observations.

1. $T_{P} \bar{Q}$ is a degenerate quadric which has P as singular point.
2. If $P \in \bar{Q}$ is a regular point, then

$$
\begin{aligned}
T_{P} \bar{Q} & =\left\{X \in \mathbb{P}_{3} \mid f(P, X)^{2}=0\right\} \\
& =\left\{X \in \mathbb{P}_{3} \mid P^{t} A X=0\right\}
\end{aligned}
$$

is a plane, called the tangent plane to \bar{Q} in P. In fact, it is the polar plane of the point P; this is, $T_{P} \bar{Q}=\pi_{p}$.
3. If $P \in \bar{Q}$ is a singular point, then $T_{P} \bar{Q}=\mathbb{P}_{3}$.
4.4 Affine classification and notable elements of quadrics

Let $\overline{\mathbb{A}}_{3}=\mathbb{P}\left(\mathbb{R}^{4}\right)$ be the projectivized affine space, with coordinate system $\mathcal{R}=\{O, B\}$. And let ω be a quadratic form with associated matrix A. Let

$$
\bar{Q}=\left\{X \in \mathbb{P}_{3}\left(\mathbb{R}^{4}\right) \mid \omega(X)=0\right.
$$

be a projective quadric with affine quadric

$$
Q=\bar{Q} \cap \mathbb{A}_{3}=\left\{X \in \mathbb{A}_{3} \mid \omega(\tilde{X})=0\right\} \text {, where } \tilde{X}=\left(1, x_{1}, x_{2}, x_{3}\right) .
$$

4.4.1 Center of an affine quadric

Definition. We call center of an affine quadric Q to the pole of the plane at infinity, if it exists. If that point is contained in the plane at infinity then the quadric has an improper center, otherwise a proper center.
The equation of the plane at infinity is $x_{0}=0$ and the equation of the quadric is $X^{t} A X=0$. Therefore, the pole of the plane at infinity is the point P such that $P^{t} A=(1,0,0,0)$.
Proposition. The proper center of an affine quadric is the center of symmetry. Any line that contains the center of a quadric intersects the quadric in two symmetric points with respect to the center.

4.4.2 Relative position of the quadric and the plane at infinity

Let $\pi_{\infty} \equiv x_{0}=0$ be the equation of the plane at infinity and let us consider the projective quadric \bar{Q} determined by a quadratic form ω and with associated matrix

$$
A=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{01} & a_{11} & a_{12} & a_{13} \\
a_{02} & a_{12} & a_{22} & a_{23} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

We have:

$$
\bar{Q} \cap \pi_{\infty}=\left\{X \in \pi_{\infty} \mid \omega(X)=0\right\}=\left\{\left(0, x_{1}, x_{2}, x_{3}\right) \mid X^{t} A X=0\right\}
$$

this is,

$$
\bar{Q} \cap \pi_{\infty} \equiv a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{13} x_{1} x_{3}+2 a_{23} x_{2} x_{3}=0,
$$

then $\bar{Q} \cap \pi_{\infty}$ is a conic of the plane at infinity π_{∞} with matrix

$$
A_{00}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

Proposition. The quadric \bar{Q} has a center if and only if $\operatorname{det} A_{00} \neq 0$. Besides,

- If $\operatorname{det} A_{00} \neq 0$, then the conic $\bar{Q} \cap \pi_{\infty}$ is regular and \bar{Q} has a center.
- If $\operatorname{det} A_{00}=0$, then the conic $\bar{Q} \cap \pi_{\infty}$ is degenerate and \bar{Q} has no center.
4.4.3 Diameters of a quadric

Definition. We call diameter of a quadric \bar{Q} to every line that contains the center of \bar{Q}.

Definition. We call diametral plane of a quadric \bar{Q} to the planes that contain the center of \bar{Q}.

Definition. Two diameters D and D^{\prime} are said conjugated if their improper points are conjugated.

Definition. We call diametral polar plane of a diameter D to the polar plane of the improper point of D.

4.4.4 Axes of a quadric with proper center

Definition. We call axis of a quadric \bar{Q} to the diameter which is perpendicular to its diametral polar plane.

Let \bar{Q} be a projective quadric with associated matrix A. And let A_{00} be the matrix of the conic $\bar{Q} \cap \pi_{\infty}$.

As \bar{Q} has a proper center Z, the matrix A_{00} is not singular, so its three eigenvalues are not zero λ_{1}, λ_{2} and λ_{3}.

Let v_{1}, v_{2} and v_{3} be the eigenvectors associated to λ_{1}, λ_{2} and λ_{3} respectively (we choose the eigenvectors which are orthogonal two by two).

The axes of \bar{Q} are the lines that contain the center, Z, and have as directions the vectors v_{1}, v_{2} and v_{3}, respectively.

The coordinate system $\mathcal{R}=\left\{Z,\left\{v_{1}, v_{2}, v_{3}\right\}\right\}$ gives us a cartesian autoconjugated coordinate system.

We can find three situations:

1. The three eigenvalues are different. Then \bar{Q} has three axes which are orthogonal two by two.
2. An eigenvalue is double, $\lambda_{1}=\lambda_{2}$, and the other, λ_{3}, is simple. Then the dimension of the subspace of eigenvectors associated to the double eigenvalue is $\operatorname{dim} V_{1}=2$ and $\operatorname{dim} V_{3}=1$. Then V_{1} is a plane of axes perpendicular to the axis V_{3}. In this case the quadric \bar{Q} is a revolution quadric, whose axis is the one that corresponds to the eigenvalue λ_{3}.
3. The three eigenvalues are the same, $\lambda_{1}=\lambda_{2}=\lambda_{3}$. Then any diameter is the axis and the quadric is a sphere.

Definition. We call main planes of a quadric \bar{Q} to the diametral polar planes of the axes.

4.4.5 Asymptotic cones

Definition. We call asymptotes of a quadric \bar{Q} to the tangents of a conic in its improper points.
Let \bar{Q} be a projective quadric with proper center Z.
Definition. The tangent variety to the quadric \bar{Q} from the center $Z\left[\left(z_{0}, z_{1}, z_{2}, z_{3}\right)\right]$ is a cone that is called asymptotic cone. The equation of the asymptotic cone is the following one:

$$
\begin{aligned}
f(Z, X)^{2}-\omega(Z) \omega(X) & =0 \Longleftrightarrow\left(Z^{t} A X\right)\left(Z^{t} A X\right)-\left(Z^{t} A Z\right)\left(X^{t} A X\right)=0 \\
& \Longleftrightarrow x_{0}^{2}-z_{0}\left(X^{t} A X\right)=0 \\
& \Longleftrightarrow x_{0}^{2}-\frac{\operatorname{det} A_{00}}{\operatorname{det} A}\left(X^{t} A X\right)=0
\end{aligned}
$$

equivalently

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{00}} x_{0}^{2}-\bar{Q}=0 .
$$

The quadrics of ellyptic type have an imaginary asymptotic cone and the quadrics of hyperbolic type have a real asymptotic cone.

The generatrixs of the cone (lines of the cone) are the diameters tangent to the quadric.
We call asymptotic plane to the polar planes of the points of the improper conic of $\bar{Q}\left(\bar{Q} \cap \pi_{\infty}=C\right)$ (if there exists any).

Example 1. Let us consider the quadric $Q \equiv x_{1}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}+2 x_{3}+2=0$. The matrix of Q is:

$$
A=\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)
$$

The determinant of A is $\operatorname{det} A=-20$, quadric with proper center:

$$
\left(\begin{array}{llll}
z_{0} & z_{1} & z_{2} & z_{3}
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 2 & 0 & 0 \\
1 & 0 & 0 & 3
\end{array}\right)=\rho\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)
$$

this is

$$
\left\{\begin{array}{l}
2 z_{0}+z_{3}=\rho \\
z_{1}+2 z_{2}=0 \\
2 z_{1}=0 \\
z_{0}+3 z_{3}=0
\end{array}\right.
$$

The center is: $Z[(1,0,0,-1 / 3)]$.
Equation of the asymptotic cone:

$$
\begin{aligned}
\frac{\operatorname{det} A}{\operatorname{det} A_{00}} x_{0}^{2}-\bar{Q} & =0 \Longleftrightarrow \frac{20}{12} x_{0}^{2}-\left(x_{1}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}+2 x_{3} x_{0}+2 x_{0}^{2}\right)=0 \\
& \Longleftrightarrow 2 x_{0} x_{3}+4 x_{1} x_{2}+\frac{1}{3} x_{0}^{2}+x_{1}^{2}+3 x_{3}^{2}=0
\end{aligned}
$$

4.5 Metric invariants of a quadric \bar{Q}

Let us consider the quadric \bar{Q} with associated matrix A; this is, $\bar{Q} \equiv X^{T} A X=$ 0 . The following values are euclidean invariants of the quadric:

- $\operatorname{det} A$
- Eigenvalues of $A_{00}: \lambda_{1}, \lambda_{2}, \lambda_{3}$ or equivalently:

$$
\operatorname{det} A_{00}, \operatorname{tr} A_{00}=a_{11}+a_{22}+a_{33}, \quad J=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{13} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{23} & a_{33}
\end{array}\right|
$$

where

$$
A=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{01} & a_{11} & a_{12} & a_{13} \\
a_{02} & a_{12} & a_{22} & a_{23} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right) \text { and } A_{00}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

The following identities are satisfied:

- $\operatorname{det} A_{00}=\lambda_{1} \lambda_{2} \lambda_{3}$
- $J=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}$
- $\operatorname{tr} A_{00}=\lambda_{1}+\lambda_{2}+\lambda_{3}$

The charasteristic equation of A_{00} is:

$$
\left|A_{00}-\lambda I_{3}\right|=-\lambda^{3}+\operatorname{tr} A_{00} \lambda^{2}-J \lambda+\operatorname{det} A_{00}=0 .
$$

Therefore, λ_{1}, λ_{2} and λ_{3} are the roots of the equation $\left|A_{00}-\lambda I_{3}\right|=0$.
If $\operatorname{det} A_{00} \neq 0$, then the conic $\bar{Q} \cap \pi_{\infty}$ is regular and \bar{Q} has a center. If $\operatorname{det} A_{00}=0$, then the conic $\bar{Q} \cap \pi_{\infty}$ is not regular. It is a quadric of parabolloid type, it may not have a center, have a line of centers or even have a plane of centers.

4.5.1 Classification of quadrics with $\operatorname{det} A_{00} \neq 0$.

Because of $\operatorname{det} A_{00}=\lambda_{1} \lambda_{2} \lambda_{3} \neq 0$, in certain coordinate system, the matrix of the quadric is

$$
\left(\begin{array}{llll}
d_{0} & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & \lambda_{3}
\end{array}\right)
$$

and, therefore, the reduced equation of the affine quadric $\left(x_{0}=0\right)$ is

$$
d_{0}+\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}=0
$$

with $d_{0}=\frac{\operatorname{det} A}{\operatorname{det} A_{00}}$ and they are quadrics with center.
If $\operatorname{det} A=d_{0} \lambda_{1} \lambda_{2} \lambda_{3} \neq 0$ (this is, $\operatorname{rank}(A)=4$) then they are ordinary quadrics.

We can distinguish two cases:

1. the eigenvalues of A_{00} have the same sign
2. two of the eigenvalues of A_{00} have the same sign and the other the opposite sign.
3. If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)=\operatorname{sign}\left(\lambda_{3}\right)(+++0---)$, we say that A_{00} has signature $3, \operatorname{sig} A_{00}=3$, and we can encounter the following cases:
a) If $\operatorname{sign}\left(d_{0}\right)=\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)=\operatorname{sign}\left(\lambda_{3}\right)$, then $\operatorname{det} A>0$ and the reduced equation of the affine quadric is

$$
1=-\frac{x_{1}^{2}}{a^{2}}-\frac{x_{2}^{2}}{b^{2}}-\frac{x_{3}^{2}}{c^{2}}
$$

where $a^{2}=d_{0} / \lambda_{1}, b^{2}=d_{0} / \lambda_{2}$ and $c^{2}=d_{0} / \lambda_{3}$ (as the three of them are positive) which is the equation of an imaginary ellipsoid.
b) If $\operatorname{sign}\left(d_{0}\right) \neq \operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)=\operatorname{sign}\left(\lambda_{3}\right)$, then $\operatorname{det} A<0$ and the reduced equation of the affine quadric is

$$
1=\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}
$$

where $a^{2}=-d_{0} / \lambda_{1}, b^{2}=-d_{0} / \lambda_{2}$ and $c^{2}=-d_{0} / \lambda_{3}$ (as the three of them are positive) which is the equation of an ellipsoid, and if besides $a^{2}=b^{2}=c^{2}$ we obtain a sphere.
2. If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right) \neq \operatorname{sign}\left(\lambda_{3}\right)(++-0--+)$ we say that A_{00} has signature $1, \operatorname{sig} A_{00}=1$, and we can encounter the following cases:
a) If $\operatorname{sign}\left(d_{0}\right) \neq \operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right) \neq \operatorname{sign}\left(\lambda_{3}\right)$, then $\operatorname{det} A>0$ and the reduced equation of the affine quadric is

$$
1=\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}-\frac{x_{3}^{2}}{c^{2}}
$$

where $a^{2}=-d_{0} / \lambda_{1}, b^{2}=-d_{0} / \lambda_{2}$ and $c^{2}=d_{0} / \lambda_{3}$ (as the three of them are positive) which is the equation of an hyperbolic hyperboloid.
b) If $\operatorname{sign}\left(d_{0}\right)=\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right) \neq \operatorname{sign}\left(\lambda_{3}\right)$, then $\operatorname{det} A<0$ and the reduced equation of the quadric is

$$
1=-\frac{x_{1}^{2}}{a^{2}}-\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}
$$

where $a^{2}=d_{0} / \lambda_{1}, b^{2}=d_{0} / \lambda_{2}$ and $c^{2}=-d_{0} / \lambda_{3}$ (as the three of them are positive) which is the equation of an elliptic hyperboloid.

If $\operatorname{det} A=d_{0} \lambda_{1} \lambda_{2} \lambda_{3}=0$ (this is, $d_{0}=0$ and $\operatorname{rank}(A)=3$) then they are degenerate quadrics with reduced equation:

$$
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}=0
$$

We can distinguish two cases:

1. If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)=\operatorname{sign}\left(\lambda_{3}\right)$, the reduced equation of the affine quadric is

$$
0=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}
$$

which is the equation of an imaginary cone.
2. If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right) \neq \operatorname{sign}\left(\lambda_{3}\right)$, the reduced equation of the affine quadric is of the form

$$
0=a^{2} x_{1}^{2}+b^{2} x_{2}^{2}-c^{2} x_{3}^{2}
$$

which is the equation of an cone.

Table of classification of quadrics with center

4.5.2 Classification of the quadrics with $\operatorname{det} A_{00}=0$.

Because of $\operatorname{det} A_{00}=\lambda_{1} \lambda_{2} \lambda_{3}=0$, we can suppose $\lambda_{3}=0$. Hence $J=\lambda_{1} \lambda_{2}$.
In certain coordinate system the matrix of the quadric is

$$
\left(\begin{array}{llll}
b_{00} & 0 & 0 & b_{03} \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
b_{03} & 0 & 0 & 0
\end{array}\right)
$$

with $\operatorname{det} A=-b_{03}^{2} \lambda_{1} \lambda_{2}$.
The reduced equation of the affine quadric is

$$
0=b_{00}+\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}
$$

If $J=\lambda_{1} \lambda_{2} \neq 0$ we can distinguish various cases:

1. If $\operatorname{det} A \neq 0$ (this is, $b_{03} \neq 0$) The reduced equation of the affine quadric is

$$
0=2 b_{03} x_{3}+\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}
$$

and we have:
a) If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)$, this is $J>0$, the reduced equation of the affine quadric is of the form

$$
0=d x_{3}+a^{2} x_{1}^{2}+b^{2} x_{2}^{2}
$$

which is the equation of an elliptic paraboloid.
b) If $\operatorname{sign}\left(\lambda_{1}\right) \neq \operatorname{sign}\left(\lambda_{2}\right)$, this is $J<0$, the reduced equation of the affine quadric is of the form

$$
0=d x_{3}+a^{2} x_{1}^{2}-b^{2} x_{2}^{2}
$$

which is the equation of an hyperbolic paraboloid.
2. If $\operatorname{det} A=0$ (this is, $b_{03}=0$) the reduced equation of the affine quadric is

$$
0=b_{00}+\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}
$$

and we distinguish various cases:
a) If $b_{00} \neq 0$ we have

1) If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)$, this is $J>0$, the reduced equation of the affine quadric is of the form

$$
0=c+a^{2} x_{1}^{2}+b^{2} x_{2}^{2}
$$

which is the equation of an elliptic imaginary cylinder if $c>0$ or elliptic cylinder if $c<0$.
2) If $\operatorname{sign}\left(\lambda_{1}\right) \neq \operatorname{sign}\left(\lambda_{2}\right)$, this is $J<0$, the reduced equation of the affine quadric is of the form

$$
0=c+a^{2} x_{1}^{2}-b^{2} x_{2}^{2}
$$

which is the equation of a hyperbolic cylinder.
b) If $b_{00}=0$ the reduced equation of the quadric is

$$
0=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}
$$

1) If $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{2}\right)$, this is $J>0$, the affine quadric is a pair of imaginary planes which intersect in a line.
2) If $\operatorname{sign}\left(\lambda_{1}\right) \neq \operatorname{sign}\left(\lambda_{2}\right)$, this is $J<0$, the affine quadric is a pair of planes which intersect in a line.

If two of the eigenvalues of A_{00} vanish (suppose $\lambda_{2}=\lambda_{3}=0$), hence: $\operatorname{det} A=0, \operatorname{det} A_{00}=0, J=0$ and $\operatorname{tr} A_{00}=\lambda_{1}$.

In certain coordinate system the matrix of the quadric is

$$
\left(\begin{array}{cccc}
b_{00} & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and the reduced equation of the quadric is

$$
0=b_{00}+\lambda_{1} x_{1}^{2} .
$$

1. If $b_{00} \neq 0$ we have
a) If $\operatorname{sign}\left(b_{00}\right)=\operatorname{sign}\left(\lambda_{1}\right)$, the reduced equation of the affine quadric is of the form

$$
0=p^{2}+a^{2} x_{1}^{2}
$$

and the affine quadric is a pair of imaginary parallel planes .
b) If $\operatorname{sign}\left(b_{00}\right) \neq \operatorname{sign}\left(\lambda_{1}\right)$, the reduced equation is of the form

$$
0=p^{2}-a^{2} x_{1}^{2}=\left(p+a x_{1}\right)\left(p-a x_{1}\right)
$$

and the affine quadric is a pair of parallel planes.

Table of classification of quadrics with $\operatorname{det} A_{00}=0$

