## CHAPTER I: LINEAR ALGEBRA

## 1. MATRICES

Let $A$ be a matrix with $m$ rows and $n$ columns, we will say that $A$ has size $m \times n$.

We will write $A=\left(a_{i j}\right)$ with $i=1, \ldots, m, j=1, \ldots, n$. That is,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

A squared matrix $A$ is symmetric if $a_{i j}=a_{j i}, i=1, \ldots, m, j=$ $1, \ldots, n$.

Let $A$ be a squared matrix of size $n \times n$ (of order $n$ ) with $n \geq 2$. We denote by $\operatorname{det}(A)$ or $|A|$ the determinant of $A$.

Let $A_{i j}$ be the matrix obtained removing row $i$ and column $j$ of $A$. To compute the determinant of $A$ we can develop the determinant using the $i$ th row of $A$

$$
\operatorname{det}(A)=(-1)^{i+1} a_{i 1}\left|A_{i 1}\right|+(-1)^{i+2} a_{i 2}\left|A_{i 2}\right|+\cdots+(-1)^{i+n} a_{i n}\left|A_{i n}\right| .
$$

or the $j$ th column of $A$

$$
\operatorname{det}(A)=(-1)^{1+j} a_{1 j}\left|A_{1 j}\right|+(-1)^{2+j} a_{2 j}\left|A_{2 j}\right|+\cdots+(-1)^{n+j} a_{n j}\left|A_{n j}\right| .
$$

Let $A$ be an $m \times n$ matrix. The rank of $A$ is the order of the biggest squared submatrix of $A$ with non zero determinant. We will write $\operatorname{rank}(A)$.

## 2.SYSTEMS OF LINEAR EQUATIONS

Given a system of $m$ linear equations in the variables $x_{1}, x_{2}, \ldots, x_{n}$ :

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{12} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

where $m \geq 1$, the coefficients $a_{i j}$ and the independent terms $b_{i}, i=1, \ldots, m$, $j=1, \ldots, n$ are real numbers.
The matrix equation of the system is $A X=b$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right),
$$

where $A$ is the the coefficient matrix, $b$ the matrix of independent terms and $X$ the matrix of unknowns.

The matrix of the system is

$$
A \left\lvert\, b=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right.
$$

A solution of the system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of real numbers that transform the equations in identities when substituting the values $x_{1}, x_{2}, \ldots, x_{n}$ by $s_{1}, s_{2}, \ldots, s_{n}$ respectively.

The solution set of the system is the subset of $\mathbb{R}^{n}$ given by

$$
\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{R}^{n} \mid A S=b\right\} \text { where } S=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right)
$$

Rouche Theorem Let us consider a system of linear equations with $n$ unknowns with matrix equation $A X=b$. Then, the system

1. has a solution $\Leftrightarrow \operatorname{rank}(A \mid b)=\operatorname{rank}(A)$,
2. has a unique solution $\Leftrightarrow \operatorname{rank}(A \mid b)=\operatorname{rank}(A)=n$.

A system of linear equations with matrix equation $A X=b$ is homogeneous if $b$ is a matrix of zeros. We write $A X=0$.

A homogenous system of linear equations has always the zero solution and by the Rouche Theorem it has a nonzero solution (and therefore infinitely many solutions) if and only if $\operatorname{rank}(A$ $b)=\operatorname{rank}(A)<n$.

## 3. VECTOR SPACES AND SUBSPACES

A real vector space is a nonempty set $V$ (of elements called vectors) where two operations are defined.

1. Addition of vectors $+: V \times V \longrightarrow V$ is an internal operation: $\forall \mathbf{u}, \mathbf{v} \in V$ then $\mathbf{u}+\mathbf{v} \in V$. Also $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ they verify the properties:
a) Commutative. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
b) Distributive. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
c) Zero element. There exists a zero vector $\mathbf{0}$ in $V$ such that $u+\mathbf{0}=u$.
d) Opposite element. $\forall u \in V, \exists-u \in V$ such that $u+(-u)=\mathbf{0}$.
2. Multiplication by scalars (real numbers) $\cdot: \mathbb{R} \times V \longrightarrow V$ is an external operation: $\forall \mathbf{v} \in V$ and $\forall a \in \mathbb{R}$ then $a \mathbf{v} \in V$. Also $\forall u, v \in V, \forall a, b \in \mathbb{R}$ verify
a) $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
b) $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$
c) $(a b) \mathbf{u}=a(b \mathbf{u})$
d) $1 \mathbf{u}=\mathbf{u}$.

## Examples of vector spaces

1. $\mathbb{R}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{R}, i=1, \ldots n\right\}, n \in \mathbb{N}$ is a real vector space with the operations:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
& \alpha\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right)
\end{aligned}
$$

$\operatorname{con}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n} \mathbf{y} \alpha \in \mathbb{R}$. The zero vector is $\mathbf{0}=(0,0, \ldots, 0)$. The opposite vector of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is $\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$.
2. Given a homogeneous system of linear equations with real coefficients

$$
(*)\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}=0 \\
\ldots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=0
\end{array}\right.
$$

with $n$ unknowns. The set of solutions of the system (*):

$$
W=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \mid\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { is a solution of }(*)\right\} \subseteq \mathbb{R}^{n}
$$

is a real vector space.
3. The set of matrices of size $m \times n$ ( $m$ rows and $n$ columns) with real elements $\mathcal{M}_{m \times n}(\mathbb{R})$ is a real vector space with the sum of matrices and the product of matrices by scalars.
4. The set of the polynomials in $x$ of degree less than or equal to $n$ with real coefficients $\mathbb{R}_{n}[x]$ is a real vector space with the sum of polynomial and the product of polynomials by scalars.
A polynomial $p(x)$ in $\mathbb{R}_{n}[x]$ is

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

with $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$.

Definition of vector subspace
Let $V$ be a real vector space.
A nonempty subset $U$ of $V$ is a vector subspace of $V$ if $\forall \alpha, \beta \in \mathbb{R}$ and $\forall \mathbf{u}, \mathbf{v} \in U$ it holds:

$$
\alpha \mathbf{u}+\beta \mathbf{v} \in U
$$

Equivalently, a nonempty subset $U$ of $V$ is a vector subspace of $V$ if it holds:

1. $\forall \mathbf{u}, \mathbf{v} \in U, \mathbf{u}+\mathbf{v} \in U$, thus + is an inner operation in $U$,
2. $\forall \mathbf{u} \in U, \forall \alpha \in K, \alpha \mathbf{u} \in U$, thus $\cdot$ is an external operation on $U$.

Therefore, $U$ is a vector subspace if it is a vector space with the operations of $V$.

## Examples of vector subspaces

1. Given a vector space $V$, the sets $\left\{0_{V}\right\}$ and $V$ are vector subspaces of $V$.
2. $V=\mathbb{R}^{3}, U=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$ is a vector subspace of $\mathbb{R}^{3}$.
3. The solution set of a homogeneous system of linear equations with $n$ unknowns with real coefficients is a vector subspace of $\mathbb{R}^{n}$.
4. Given a nonzero vector $u$ in $V$, the set

$$
U=\{a u \mid a \in \mathbb{R}\}
$$

is a vector subspace of $V$.

Let $V$ be a real vector space.
A vector $u \in V$ is a linear combination of the vectors $u_{1}, \ldots, u_{n} \in V$ if there exist scalars $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
u=a_{1} u_{1}+\ldots+a_{n} u_{n}=\sum_{i=1}^{n} a_{i} u_{i}
$$

Let $C$ be a nonempty subset of $V$. Then the set of all the linear combinatuions with vectors of $C$,

$$
\langle C\rangle=\left\{\sum_{i=1}^{n} a_{i} u_{i} \mid a_{i} \in \mathbb{R}, u_{i} \in C\right\}
$$

is a vector subspace of $V$ which is called the subspace generated by $C$.
Let $C=\{(1,0,0),(0,1,1)\} \subseteq \mathbb{R}^{3}$. Then

$$
\langle C\rangle=\{(a, b, b) \mid a, b \in \mathbb{R}\} .
$$

The intersection of two subspaces $U_{1}$ and $U_{2}$ of $V$

$$
U_{1} \cap U_{2}=\left\{v \mid v \in U_{1} \text { and } v \in U_{2}\right\} .
$$

is a vector subspace of $V$.
The subspace $\langle C\rangle$ generated by $C$ verifies:

1. $C \subseteq\langle C\rangle$.
2. Every subspace of $W$ such that $C \subseteq W$ verifies $\langle C\rangle \subseteq W$.
3. The subspace $\langle C\rangle$ coincides with the intersection of all subspaces containing $C$.

A vector space $V$ is finitely generated if there exists a finite set of vectors $G$ such that $V=\langle G\rangle$, the set $G$ is a generating set of $V$.

Let $V=\mathbb{R}^{3}$.

1. $G_{1}=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a generating set of $\mathbb{R}^{3}$, since every vector $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ can be written as

$$
\left(x_{1}, x_{2}, x_{3}\right)=x_{1}(1,0,0)+x_{2}(0,1,0)+x_{3}(0,0,1)
$$

2. Let us check that $G_{2}=\{(1,1,1),(1,1,0),(1,0,0)\}$ is a generating set of $\mathbb{R}^{3}$. Given $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, we wonder if there exist $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ such that

$$
\left(x_{1}, x_{2}, x_{3}\right)=\lambda_{1}(1,1,1)+\lambda_{2}(1,1,0)+\lambda_{3}(1,0,0)
$$

equivalently if the following system in the variables $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ has a solution

$$
\left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+\lambda_{3}=x_{1} \\
\lambda_{1}+\lambda_{2}=x_{2} \\
\lambda_{1}=x_{3}
\end{array}\right.
$$

Since the coefficient matrix has rank 3, then Rouche Theorem implies that for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ the system has a solution.
3. Let us check that $G_{3}=\{(1,1,1),(2,1,1),(0,0,1),(3,0,0)\}$ is a generating system of $\mathbb{R}^{3}$. Given $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. We wonder if there exist $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathbb{R}$ such that

$$
\left(x_{1}, x_{2}, x_{3}\right)=\lambda_{1}(1,1,1)+\lambda_{2}(2,1,1)+\lambda_{3}(0,0,1)+\lambda_{4}(3,0,0)
$$

equivalently if the following system with unknown variables $\lambda_{1}, \lambda_{2}, \lambda_{3}$ y $\lambda_{4}$ has a solution

$$
\left\{\begin{array}{l}
\lambda_{1}+2 \lambda_{2}+3 \lambda_{4}=x_{1} \\
\lambda_{1}+\lambda_{2}=x_{2} \\
\lambda_{1}+\lambda_{2}+\lambda_{3}=x_{3}
\end{array}\right.
$$

The coefficient matrix has rank 3 so Rouche's Theorem allows to say that for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ the system has infinitely many solutions.
4. $G_{4}=\{(1,1,-3),(0,0,1)\}$ is not a generating set of $\mathbb{R}^{3}$. The reason is that the system

$$
\left\{\begin{array}{l}
\lambda_{1}=x_{1} \\
\lambda_{2}=x_{2} \\
-3 \lambda_{1}+\lambda_{2}=x_{3}
\end{array}\right.
$$

does not have a solution for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. For example, if $\left(x_{1}, x_{2}, x_{3}\right)=(0,1,0)$ the system has no solution.

We observe in the previous example that the real vector space $\mathbb{R}^{3}$ is finitely generated but the generating set is not unique. The natural question is,
how many vectors do we need to generate $\mathbb{R}^{3}$ ?

