4. BASES AND DIMENSION

Definition Let u_{1}, \ldots, u_{n} be n vectors in V. The vectors u_{1}, \ldots, u_{n} are linearly independent if the only linear combination of them equal to the zero vector has only zero scalars; that is, given $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

$$
\text { if } \lambda_{1} u_{1}+\ldots+\lambda_{n} u_{n}=\mathbf{0} \Rightarrow \lambda_{1}=\ldots=\lambda_{n}=0 .
$$

Otherwise, it is said that u_{1}, \ldots, u_{n} are linearly dependent, that is
$\exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ not all zero such that $\lambda_{1} u_{1}+\ldots+\lambda_{n} u_{n}=\mathbf{0}$.

1. Let us prove that $u_{1}=(1,0,0), u_{2}=(0,-3,0), u_{3}=(0,0,5)$ are linearly independent in \mathbb{R}^{3}. If $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{2} u_{3}=0_{\mathbb{R}^{3}}$ then $\left(\lambda_{1},-3 \lambda_{2}, 5 \lambda_{3}\right)=$ $(0,0,0)$ and then $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$.
2. $\{(1,2,0),(2,0,0),(0,1,0),(0,0,6)\}$ is a set of linearly dependent vectors because $(1,2,0)-(1 / 2)(2,0,0)-2(0,1,0)+0(0,0,6)=(0,0,0)$.
3. If 0 is an element of C, then C is a set of linearly dependent vectors.
4. u, v are linearly dependent $\Leftrightarrow u=\alpha v$, with $\alpha \in \mathbb{R}$.

Theorem Let V be a real vector space. The number of elements of any generating set of V is greater than or equal to the number of elements of any set of linearly independent vectors of V.

Definition Let V be a finitely generated real vector space. A subset $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ of V is a basis of V if it verifies,

1. B is a generating set of V,
2. B is a set of linearly independent vectors.

Example Let e_{i} be the vector of \mathbb{R}^{n} with zeros in every entry except for the i th entry, which equals 1. $B=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n} called the standard basis.

Theorem (Existence of basis) Every set of generating vectors G of a real vector space V which is finitely generated and nonzero contains a basis B of V. Therefore, every real vector space V finitely generated and nonzero has a basis.

Example In $V=\mathbb{R}^{2}$ the set

$$
G=\{(1,0),(1,1),(-1,0),(1,2)\}
$$

is a generating set of V and contains the basis $B=\{(1,0),(1,1)\}$ of V, which is obtained by removing vectors of G linearly dependent of the remaining vectors of G. In this case $(-1,0)=(-1)(1,0)$ and $(1,2)=2(1,1)-(1,0)$.

Proposition Let V be a finitely generated real vector space and let $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. Every vector of V has a unique expression as a linear combination of the vectors of B.

Definition Let V be a finitely generated real vector space and let $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. The coordinates of $v \in V$ are the scalars in the unique list $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ such that $v=\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$. We will write $\left(\lambda_{1}, \ldots, \lambda_{n}\right)_{B}$ to mean the coordinates of a vector in the basis B.

$$
\text { Example In } V=\mathbb{R}^{3} \text { fix the basis } B=\left\{v_{1}=(1,0,0), v_{2}=(0,2,0), v_{3}=\right.
$$ $(0,0,-1)\}$. The coordinates of $v=(2,1,1)$ in B are $(2,1 / 2,-1)_{B}$ sinse $v=$ $2 v_{1}+1 / 2 v_{2}-1 v_{3}$.

Remarks

1. Observe that a vector space has infinitely many bases.
2. If V is a finitely generated vector space then every basis has a finite number of vectors.
3. The set $\mathbb{R}[x]$ of all the polynomials in x with real coefficients is a real vector space, which is not finitely generated. A basis of $\mathbb{R}[x]$ has infinitely many vectors.

Dimension Theorem All the basis of a finitely generated real vector space $V \neq\{0\}$ have the same number of vectors.
Definition The dimension of a finitely generated real vector space V, is the number of elements of a basis of V. We denote it by $\operatorname{dim} V$. We agree that $\operatorname{dim}\{\mathbf{0}\}=0$.

Theorem Let V be a finitely generated real vector space. Every linearly independent set of vectors of V belong to a basis of V.
Example Let $V=\mathbb{R}^{3}$. The set of linearly independent vectors $I=\{(1,1,0),(0,2,0)\}$ is a subset of the basis

$$
\{(1,1,0),(0,2,0),(0,0,1)\}
$$

of \mathbb{R}^{3}, the vector $(0,0,1)$ was added.
Definition The rank of a set of vectors $C=\left\{u_{1}, \ldots, u_{n}\right\}$ in V is the dimension of the subspace they generate:

$$
\operatorname{rank}(C)=\operatorname{dim}\langle C\rangle
$$

Given a finite dimensioanl space V, we fix a basis B. Let M be the matrix whose rows are the coordinates of the vectors of C in the basis B. Then,

$$
\operatorname{rank}(C)=\operatorname{rank}(M)
$$

Proposition The rank of a matrix M equals the highest number of row vectors of M (equivalently column vectors) which are linearly independent.

5. EQUATIONS OF SUBSPACES

CARTESIAN EQUATIONS

Proposition There exists a homogeneous system of linear equations $A X=$ 0 , with $\operatorname{dim} V-\operatorname{dim} U$ equations, whose solution set equals the set of the coordinates of all the vectors of U in the basis B, that is

$$
\begin{aligned}
& \left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n} \mid \lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n} \in U\right\}= \\
& =\left\{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{R}^{n} \mid A S=0\right\} \text { where } S=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) .
\end{aligned}
$$

Every homogeneous system verifying the previous statement is given the name of system of implicit or cartesian equations of U in the basis B.
Let us suppose that $\operatorname{dim} U=m$ (with $0<m<n$) and let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of U. To find the implicit equations of U means to look for conditions on the coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{B}$ of a vector v in B so that v belongs to U.

Let us suppose that the coordinates of u_{i} in the basis B are $\left(u_{i 1}, \ldots, u_{i n}\right)_{B}$ and built the matrix M of size $(m+1) \times n$:

$$
M=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
u_{11} & u_{12} & \cdots & u_{1 n} \\
u_{21} & u_{22} & \cdots & u_{2 n} \\
\vdots & \vdots & & \vdots \\
u_{m 1} & u_{m 2} & \cdots & u_{m n}
\end{array}\right)
$$

The vector v belongs to U if it is a linear combination of the vectors in $\left\{u_{1}, \ldots, u_{m}\right\}$, then $\operatorname{rank}(M)=m$. This means that all the minors of order $m+1$ of M are zero. Each minor of order $m+1$ provides a homogeneous linear equation. Since $\operatorname{dim} U=m$ we can reduce the system to $l=n-m$ equations

$$
\text { Cartesian equations of } U\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots \\
a_{l 1} x_{1}+a_{l 2} x_{2}+\cdots+a_{l n} x_{n}=0
\end{array}\right.
$$ taking l minors of order $m+1$ containing a nonzero minor of order m previously fixed.

Observe that the cartesian equations of a subspace U in the basis B are not unique.

PARAMETRIC EQUATIONS

Definition The parametric equations of U in the basis B are a parametric solution of the system of cartesian equations of U in the basis B.
If $\operatorname{dim} U=m$ the parametric equations are

$$
\text { Parametric equations of } U\left\{\begin{array}{c}
x_{1}=u_{11} \alpha_{1}+u_{21} \alpha_{2}+\cdots+u_{m 1} \alpha_{m} \\
x_{2}=u_{12} \alpha_{1}+u_{22} \alpha_{2}+\cdots+u_{m 2} \alpha_{m} \\
\vdots \\
x_{n}=u_{1 n} \alpha_{1}+u_{2 n} \alpha_{2}+\cdots+u_{m n} \alpha_{m}
\end{array}\right.
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are the parameters and $u_{i j} \in \mathbb{R}$.

They can be also written as

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& \quad=\left(u_{11} \alpha_{1}+u_{21} \alpha_{2}+\cdots+u_{m 1} \alpha_{m}, \ldots, u_{1 n} \alpha_{1}+u_{2 n} \alpha_{2}+\cdots+u_{m n} \alpha_{m}\right)
\end{aligned}
$$

This means that a vector $v \in V$, with coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{B}$, belongs to U if

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{n}\right)_{B}= \\
& =\left(u_{11} \alpha_{1}+u_{21} \alpha_{2}+\cdots+u_{m 1} \alpha_{m}, \ldots, u_{1 n} \alpha_{1}+u_{2 n} \alpha_{2}+\cdots+u_{m n} \alpha_{m}\right)_{B}= \\
& =\alpha_{1}\left(u_{11}, \ldots, u_{1 n}\right)_{B}+\alpha_{2}\left(u_{21}, \ldots, u_{2 n}\right)_{B} \ldots+\alpha_{m}\left(u_{m 1}, \ldots, u_{m n}\right)_{B}
\end{aligned}
$$

If we call u_{i} the coordinate vector $\left(u_{i 1}, \ldots, u_{i n}\right)_{B}, i=1, \ldots, m$ then

$$
\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

is a basis of U.

6. OPERATIONS WITH SUBSPACES

INTERSECTION OF SUBSPACES

Let V be a real vector space with basis B.
The intersection of vector subspaces is a vector subspace. We explain next how to obtain the equations of the intersection of two subspaces.
Let U_{1} and U_{2} be vector subspaces of V with systems of cartesian equations

$$
\begin{aligned}
& \text { Equations of } U_{1}\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
\vdots \\
a_{l_{1} 1} x_{1}+a_{l_{1} 2} x_{2}+\cdots+a_{l_{1} n} x_{n}=0
\end{array}\right. \\
& \text { Equations of } U_{2}\left\{\begin{array}{c}
b_{11} x_{1}+b_{12} x_{2}+\cdots+b_{1 n} x_{n}=0 \\
\vdots \\
b_{l_{2} 1} x_{1}+b_{l_{2} 2} x_{2}+\cdots+b_{l_{2} n} x_{n}=0,
\end{array}\right.
\end{aligned}
$$

U_{1} has l_{1} equations and U_{2} has l_{2}.

The intersection subspace $U_{1} \cap U_{2}$ contains those vectors of V whose coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{B}$ verify the system:

$$
(*)=\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
\vdots \\
a_{l_{1} 1} x_{1}+a_{l_{1} 2} x_{2}+\cdots+a_{l_{1} n} x_{n}=0 \\
b_{11} x_{1}+b_{12} x_{2}+\cdots+b_{1 n} x_{n}=0 \\
\vdots \\
b_{l_{2} 1} x_{1}+b_{l_{2} 2} x_{2}+\cdots+b_{l_{2} n} x_{n}=0
\end{array}\right.
$$

Remarks

1. The system of cartesian equations of $U_{1} \cap U_{2}$ is obtained removing from (*) equations that depend linearly on the remaining equations. This can be achieved obtaining the echelon form of $(*)$. Thus, the number of cartesian equations of $U_{1} \cap U_{2}$ is $\leq l_{1}+l_{2}$.
2. A parametric solution of $(*)$ provides the parametric equations of $U_{1} \cap U_{2}$ and from them a basis of $U_{1} \cap U_{2}$ is obtained.

SUM OF SUBSPACES

Given subspaces U_{1} and U_{2} of V, in general $U_{1} \cup U_{2}$ is not a subspace of V. Let us see a counterexample.

Example Given the subspaces of $V=\mathbb{R}^{2}$

$$
\begin{aligned}
& U_{1}=\left\{(x, 0) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\} \\
& U_{2}=\left\{(0, y) \in \mathbb{R}^{2} \mid y \in \mathbb{R}\right\} .
\end{aligned}
$$

The set $U_{1} \cup U_{2}$ is not a subspace of \mathbb{R}^{2} since $u_{1}=(1,0) \in U_{1}, u_{2}=(0,1) \in U_{2}$ but $u_{1}+u_{2}=(1,1) \notin U_{1} \cup U_{2}$.

Definition Let U_{1} and U_{2} be subspaces of V. We call sum of U_{1} and U_{2} to the set

$$
U_{1}+U_{2}=\left\{u_{1}+u_{2} \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\} .
$$

Proposition The set $U_{1}+U_{2}$ is a vector subspace of V, it is the smaller subspace that contains $U_{1} \cup U_{2}$, that is $U_{1}+U_{2}=\left\langle U_{1} \cup U_{2}\right\rangle$.

To compute $U_{1}+U_{2}$ it is important to take into account that if $B_{U_{1}}$ is a basis of U_{1} and $B_{U_{2}}$ is a basis of U_{2} then

$$
U_{1}+U_{2}=\left\langle B_{U_{1}} \cup B_{U_{2}}\right\rangle,
$$

that is, $B_{U_{1}} \cup B_{U_{2}}$ is a generating set of $U_{1}+U_{2}$. We can obtain a basis $B_{U_{1}+U_{2}}$ of $U_{1}+U_{2}$ from $B_{U_{1}} \cup B_{U_{2}}$ by removing vectors, to obtain a linearly independent set, which is also a generating set.

DIRECT SUM OF SUBSPACES

Definition Let U_{1} and U_{2} be subspaces of V. The subspace $U_{1}+U_{2}$ is a direct sum if

$$
U_{1} \cap U_{2}=\left\{0_{V}\right\} .
$$

We write $U_{1} \oplus U_{2}$.
Example Let $V=\mathbb{R}^{3}$ and fix the standard basis. Let us consider vector subspaces U and W given by their cartesian equations,

$$
U \equiv\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}=0 \\
x_{1}+x_{3}=0,
\end{array} \quad W \equiv 2 x_{2}+x_{3}=0\right.
$$

The coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ of a vector of $U \cap W$ verify the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}=0 \\
x_{1}+x_{3}=0 \\
2 x_{2}+x_{3}=0
\end{array}\right.
$$ whose coefficient matrix has rank 3. By Rouche's Theorem the system has only the zero solution (it is a homogeneous system). This shows that $U \cap$ $W=\left\{0_{\mathbb{R}^{3}}\right\}$ and then $U \oplus W$, that is the sum is a direct sum.

Proposition Let B_{1} be a basis of U_{1} and B_{2} a basis of U_{2} then:

$$
U_{1} \cap U_{2}=\left\{0_{V}\right\} \Leftrightarrow B_{1} \cup B_{2} \text { is linearly independent, }
$$

that is

$$
U_{1} \oplus U_{2} \Leftrightarrow B_{1} \cup B_{2} \text { is a basis of } U_{1}+U_{2} .
$$

Definition Two subspaces U_{1} and U_{2} of a real vector space V are complementary if $U_{1} \oplus U_{2}=V$.

$$
U_{1} \oplus U_{2}=V \Leftrightarrow\left\{\begin{array}{l}
U_{1}+U_{2}=V \\
U_{1} \cap U_{2}=\left\{0_{V}\right\}
\end{array}\right.
$$

Remarks

1. Every subspace has a complementary subspace.
2. Let U_{1} and U_{2} be complementary subspaces of V. If B_{1} is a basis of U_{1} and B_{2} is a basis of U_{2} then $B_{1} \cup B_{2}$ is a basis of V.

Theorem Dimension Formula or Grassman Formula Let U_{1} and U_{2} be subspaces of V. Then

$$
\operatorname{dim} U_{1}+\operatorname{dim} U_{2}=\operatorname{dim}\left(U_{1}+U_{2}\right)+\operatorname{dim}\left(U_{1} \cap U_{2}\right)
$$

