4. BASES AND DIMENSION

Definition Let u_1, \ldots, u_n be *n* vectors in *V*. The vectors u_1, \ldots, u_n are linearly independent if the only linear combination of them equal to the zero vector has only zero scalars; that is, given $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$

if
$$\lambda_1 u_1 + \ldots + \lambda_n u_n = \mathbf{0} \Rightarrow \lambda_1 = \ldots = \lambda_n = 0.$$

Otherwise, it is said that u_1, \ldots, u_n are linearly dependent, that is

 $\exists \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ not all zero such that $\lambda_1 u_1 + \ldots + \lambda_n u_n = \mathbf{0}$.

- 1. Let us prove that $u_1 = (1, 0, 0)$, $u_2 = (0, -3, 0)$, $u_3 = (0, 0, 5)$ are linearly independent in \mathbb{R}^3 . If $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_2 u_3 = 0_{\mathbb{R}^3}$ then $(\lambda_1, -3\lambda_2, 5\lambda_3) = (0, 0, 0)$ and then $\lambda_1 = \lambda_2 = \lambda_3 = 0$.
- **2.** {(1, 2, 0), (2, 0, 0), (0, 1, 0), (0, 0, 6)} is a set of linearly dependent vectors because (1, 2, 0) (1/2)(2, 0, 0) 2(0, 1, 0) + 0(0, 0, 6) = (0, 0, 0).
- 3. If 0 is an element of C, then C is a set of linearly dependent vectors.
- 4. u, v are linearly dependent $\Leftrightarrow u = \alpha v$, with $\alpha \in \mathbb{R}$.

Theorem Let V be a real vector space. The number of elements of any generating set of V is greater than or equal to the number of elements of any set of linearly independent vectors of V.

Definition Let V be a finitely generated real vector space. A subset $B = \{v_1, \ldots, v_n\}$ of V is a basis of V if it verifies,

- 1. B is a generating set of V,
- 2. *B* is a set of linearly independent vectors.

Example Let e_i be the vector of \mathbb{R}^n with zeros in every entry except for the *i*th entry, which equals 1. $B = \{e_1, \ldots, e_n\}$ is a basis of \mathbb{R}^n called the standard basis.

Theorem (Existence of basis) Every set of generating vectors G of a real vector space V which is finitely generated and nonzero contains a basis B of V. Therefore, every real vector space V finitely generated and nonzero has a basis.

Example In $V = \mathbb{R}^2$ the set

$$G = \{(1,0), (1,1), (-1,0), (1,2)\}$$

is a generating set of V and contains the basis $B = \{(1,0), (1,1)\}$ of V, which is obtained by removing vectors of G linearly dependent of the remaining vectors of G. In this case (-1,0) = (-1)(1,0) and (1,2) = 2(1,1) - (1,0).

Proposition Let *V* be a finitely generated real vector space and let $B = \{v_1, \ldots, v_n\}$ be a basis of *V*. Every vector of *V* has a unique expression as a linear combination of the vectors of *B*.

Definition Let *V* be a finitely generated real vector space and let $B = \{v_1, \ldots, v_n\}$ be a basis of *V*. The coordinates of $v \in V$ are the scalars in the unique list $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ such that $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$. We will write $(\lambda_1, \ldots, \lambda_n)_B$ to mean the coordinates of a vector in the basis *B*.

Example In $V = \mathbb{R}^3$ fix the basis $B = \{v_1 = (1, 0, 0), v_2 = (0, 2, 0), v_3 = (0, 0, -1)\}$. The coordinates of v = (2, 1, 1) in B are $(2, 1/2, -1)_B$ sinse $v = 2v_1 + 1/2v_2 - 1v_3$.

Remarks

- 1. Observe that a vector space has infinitely many bases.
- 2. If V is a finitely generated vector space then every basis has a finite number of vectors.
- 3. The set $\mathbb{R}[x]$ of all the polynomials in x with real coefficients is a real vector space, which is not finitely generated. A basis of $\mathbb{R}[x]$ has infinitely many vectors.

Dimension Theorem All the basis of a finitely generated real vector space $V \neq \{0\}$ have the same number of vectors.

Definition The dimension of a finitely generated real vector space V, is the number of elements of a basis of V. We denote it by $\dim V$. We agree that $\dim\{\mathbf{0}\} = 0$.

Theorem Let V be a finitely generated real vector space. Every linearly independent set of vectors of V belong to a basis of V.

Example Let $V = \mathbb{R}^3$. The set of linearly independent vectors $I = \{(1, 1, 0), (0, 2, 0)\}$ is a subset of the basis

 $\{(1,1,0), (0,2,0), (0,0,1)\}\$

of \mathbb{R}^3 , the vector (0, 0, 1) was added.

Definition The rank of a set of vectors $C = \{u_1, \ldots, u_n\}$ in V is the dimension of the subspace they generate:

 $\operatorname{rank}(C) = \dim \langle C \rangle.$

Given a finite dimensioanl space V, we fix a basis B. Let M be the matrix whose rows are the coordinates of the vectors of C in the basis B. Then,

 $\operatorname{rank}(C) = \operatorname{rank}(M).$

Proposition The rank of a matrix M equals the highest number of row vectors of M (equivalently column vectors) which are linearly independent.

5. EQUATIONS OF SUBSPACES

CARTESIAN EQUATIONS

Proposition There exists a homogeneous system of linear equations AX = 0, with $\dim V - \dim U$ equations, whose solution set equals the set of the coordinates of all the vectors of U in the basis B, that is

$$\{(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \mid \lambda_1 v_1 + \dots + \lambda_n v_n \in U\} =$$
$$= \{(s_1, s_2, \dots, s_n) \in \mathbb{R}^n \mid AS = 0\} \text{ where } S = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

Every homogeneous system verifying the previous statement is given the name of system of implicit or cartesian equations of U in the basis B.

Let us suppose that dim U = m (with 0 < m < n) and let $\{u_1, \ldots, u_m\}$ be a basis of U. To find the implicit equations of U means to look for conditions on the coordinates $(x_1, x_2, \ldots, x_n)_B$ of a vector v in B so that v belongs to U.

Let us suppose that the coordinates of u_i in the basis B are $(u_{i1}, \ldots, u_{in})_B$ and built the matrix M of size $(m + 1) \times n$:

$$M = \left(egin{array}{ccccc} x_1 & x_2 & \cdots & x_n \ u_{11} & u_{12} & \cdots & u_{1n} \ u_{21} & u_{22} & \cdots & u_{2n} \ dots & dots & dots & dots \ u_{m1} & u_{m2} & \cdots & u_{mn} \end{array}
ight)$$

The vector v belongs to U if it is a linear combination of the vectors in $\{u_1, \ldots, u_m\}$, then $\operatorname{rank}(M) = m$. This means that all the minors of order m + 1 of M are zero. Each minor of order m + 1 provides a homogeneous linear equation. Since $\dim U = m$ we can reduce the system to l = n - m equations

Cartesian equations of
$$U \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{l1}x_1 + a_{l2}x_2 + \dots + a_{ln}x_n = 0, \end{cases}$$

1

taking l minors of order m + 1 containing a nonzero minor of order m previously fixed.

Observe that the cartesian equations of a subspace U in the basis B are not unique.

PARAMETRIC EQUATIONS

Definition The parametric equations of U in the basis B are a parametric solution of the system of cartesian equations of U in the basis B.

If $\dim U = m$ the parametric equations are

Parametric equations of
$$U \begin{cases} x_1 = u_{11}\alpha_1 + u_{21}\alpha_2 + \dots + u_{m1}\alpha_m \\ x_2 = u_{12}\alpha_1 + u_{22}\alpha_2 + \dots + u_{m2}\alpha_m \\ \vdots \\ x_n = u_{1n}\alpha_1 + u_{2n}\alpha_2 + \dots + u_{mn}\alpha_m, \end{cases}$$

where $\alpha_1, \alpha_2, \ldots, \alpha_m$ are the parameters and $u_{ij} \in \mathbb{R}$.

They can be also written as

$$(x_1, x_2, \dots, x_n) = = (u_{11}\alpha_1 + u_{21}\alpha_2 + \dots + u_{m1}\alpha_m, \dots, u_{1n}\alpha_1 + u_{2n}\alpha_2 + \dots + u_{mn}\alpha_m).$$

This means that a vector $v \in V$, with coordinates $(x_1, x_2, \ldots, x_n)_B$, belongs to U if

$$(x_1, x_2, \dots, x_n)_B = = (u_{11}\alpha_1 + u_{21}\alpha_2 + \dots + u_{m1}\alpha_m, \dots, u_{1n}\alpha_1 + u_{2n}\alpha_2 + \dots + u_{mn}\alpha_m)_B = = \alpha_1(u_{11}, \dots, u_{1n})_B + \alpha_2(u_{21}, \dots, u_{2n})_B \dots + \alpha_m(u_{m1}, \dots, u_{mn})_B.$$

If we call u_i the coordinate vector $(u_{i1}, \ldots, u_{in})_B$, $i = 1, \ldots, m$ then

$$\{u_1, u_2, \ldots, u_m\}$$

is a basis of U.

6. OPERATIONS WITH SUBSPACES

INTERSECTION OF SUBSPACES

Let V be a real vector space with basis B.

The intersection of vector subspaces is a vector subspace. We explain next how to obtain the equations of the intersection of two subspaces.

Let U_1 and U_2 be vector subspaces of V with systems of cartesian equations

Equations of
$$U_1$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
\vdots \\
a_{l_11}x_1 + a_{l_12}x_2 + \dots + a_{l_1n}x_n = 0, \\
b_{11}x_1 + b_{12}x_2 + \dots + b_{1n}x_n = 0 \\
\vdots \\
b_{l_21}x_1 + b_{l_22}x_2 + \dots + b_{l_2n}x_n = 0,
\end{cases}$$

 U_1 has l_1 equations and U_2 has l_2 .

The intersection subspace $U_1 \cap U_2$ contains those vectors of *V* whose coordinates $(x_1, x_2, \ldots, x_n)_B$ verify the system:

$$(*) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{l_11}x_1 + a_{l_12}x_2 + \dots + a_{l_1n}x_n = 0 \\ b_{11}x_1 + b_{12}x_2 + \dots + b_{1n}x_n = 0 \\ \vdots \\ b_{l_21}x_1 + b_{l_22}x_2 + \dots + b_{l_2n}x_n = 0, \end{cases}$$

Remarks

- 1. The system of cartesian equations of $U_1 \cap U_2$ is obtained removing from (*) equations that depend linearly on the remaining equations. This can be achieved obtaining the echelon form of (*). Thus, the number of cartesian equations of $U_1 \cap U_2$ is $\leq l_1 + l_2$.
- 2. A parametric solution of (*) provides the parametric equations of $U_1 \cap U_2$ and from them a basis of $U_1 \cap U_2$ is obtained.

SUM OF SUBSPACES

Given subspaces U_1 and U_2 of V, in general $U_1 \cup U_2$ is not a subspace of V. Let us see a counterexample.

Example Given the subspaces of $V = \mathbb{R}^2$

$$U_1 = \{ (x, 0) \in \mathbb{R}^2 | x \in \mathbb{R} \} \\ U_2 = \{ (0, y) \in \mathbb{R}^2 | y \in \mathbb{R} \}.$$

The set $U_1 \cup U_2$ is not a subspace of \mathbb{R}^2 since $u_1 = (1, 0) \in U_1$, $u_2 = (0, 1) \in U_2$ but $u_1 + u_2 = (1, 1) \notin U_1 \cup U_2$.

Definition Let U_1 and U_2 be subspaces of V. We call sum of U_1 and U_2 to the set

$$U_1 + U_2 = \{u_1 + u_2 | u_1 \in U_1, u_2 \in U_2\}.$$

Proposition The set $U_1 + U_2$ is a vector subspace of V, it is the smaller subspace that contains $U_1 \cup U_2$, that is $U_1 + U_2 = \langle U_1 \cup U_2 \rangle$.

To compute $U_1 + U_2$ it is important to take into account that if B_{U_1} is a basis of U_1 and B_{U_2} is a basis of U_2 then

$$U_1 + U_2 = \langle B_{U_1} \cup B_{U_2} \rangle,$$

that is, $B_{U_1} \cup B_{U_2}$ is a generating set of $U_1 + U_2$. We can obtain a basis $B_{U_1+U_2}$ of $U_1 + U_2$ from $B_{U_1} \cup B_{U_2}$ by removing vectors, to obtain a linearly independent set, which is also a generating set.

DIRECT SUM OF SUBSPACES

Definition Let U_1 and U_2 be subspaces of V. The subspace $U_1 + U_2$ is a direct sum if

$$U_1 \cap U_2 = \{0_V\}.$$

We write $U_1 \oplus U_2$.

Example Let $V = \mathbb{R}^3$ and fix the standard basis. Let us consider vector subspaces U and W given by their cartesian equations,

$$U \equiv \begin{cases} x_1 + x_2 + x_3 = 0\\ x_1 + x_3 = 0, \end{cases} \quad W \equiv 2x_2 + x_3 = 0.$$

The coordinates (x_1, x_2, x_3) of a vector of $U \cap W$ verify the system

$$\begin{cases} x_1 + x_2 + x_3 = 0\\ x_1 + x_3 = 0\\ 2x_2 + x_3 = 0, \end{cases}$$

whose coefficient matrix has rank 3. By Rouche's Theorem the system has only the zero solution (it is a homogeneous system). This shows that $U \cap W = \{0_{\mathbb{R}^3}\}$ and then $U \oplus W$, that is the sum is a direct sum.

Proposition Let B_1 be a basis of U_1 and B_2 a basis of U_2 then:

 $U_1 \cap U_2 = \{0_V\} \Leftrightarrow B_1 \cup B_2$ is linearly independent,

that is

$$U_1 \oplus U_2 \Leftrightarrow B_1 \cup B_2$$
 is a basis of $U_1 + U_2$.

Definition Two subspaces U_1 and U_2 of a real vector space V are complementary if $U_1 \oplus U_2 = V$.

$$U_1 \oplus U_2 = V \Leftrightarrow \begin{cases} U_1 + U_2 = V \\ U_1 \cap U_2 = \{0_V\} \end{cases}$$

Remarks

- 1. Every subspace has a complementary subspace.
- 2. Let U_1 and U_2 be complementary subspaces of V. If B_1 is a basis of U_1 and B_2 is a basis of U_2 then $B_1 \cup B_2$ is a basis of V.

Theorem Dimension Formula or Grassman Formula Let U_1 and U_2 be subspaces of V. Then

 $\dim U_1 + \dim U_2 = \dim(U_1 + U_2) + \dim(U_1 \cap U_2).$