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MAPS BETWEEN SETS
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Let A, B and C be nonempty sets.

Definition A map f : A → B is a correspondence assigning to
each element of A a unique element in B. The set A is called
domain of the map f and the set B is the range of f .

Given a ∈ A we denote by f (a) the image element of a in B
through the map f . The image of f is the set

Im(f ) = f (A) = {f (a) | a ∈ A}.

The inverse image of an element b ∈ B is the set

f−1(b) = {a ∈ A | f (a) = b}.

The identity map A is the map idA : A→ A defined by idA(a) =
a for every a ∈ A.
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Definition Given a map f : A→ B we call f :

1. Injective or one-to-one if given two different elements of A
their images through f are distinct. That is

∀a1, a2 ∈ A, a1 6= a2 ⇒ f (a1) 6= f (a2).

Equivalently,

if ∃a1, a2 ∈ A such that f (a1) = f (a2)⇒ a1 = a2.

2. Surjective if every element in B is the image through f of
an element of A. That is, f (A) = B,

∀b ∈ B, ∃a ∈ A such that f (a) = b.

3. Bijective if it is injective and surjective.
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Definition Given two maps f : A → B and g : B → C, the
composition of f with g is the map g ◦ f : A → C defined by
(g ◦ f )(a) = g(f (a)) for every a ∈ A.

Definition Given a bijective map f : A → B the inverse map of
f is the map f−1 : B → A defined by:

∀b ∈ B, f−1(b) = a if f (a) = b with a ∈ A.

It holds that f−1 ◦ f = idA and that f ◦ f−1 = idB.
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7. LINEAR TRANSFORMATIONS
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Let V and W be real vector spaces.

Definition A map f : V → W is a linear transformation (or
homomorphism) if it verifies

∀u, v ∈ V , f (u + v) = f (u) + f (v),
∀λ ∈ R, f (λu) = λf (u).

This is equivalent to

∀u, v ∈ V , ∀λ, µ ∈ R, f (λu + µv) = λf (u) + µf (v).

A linear transformation f : V → W where W = V is called
endomorphism.
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Example The map f : R3 −→ R3 defined by

f (x, y, z) = (2x− y + 4z, 3x− z, 6x + y)

is linear.

It is also linear every transformation f : Rn → Rm defined by

f (x1, . . . , xn) = (

n∑
i=1

aixi,

n∑
i=1

bixi, . . . ,

n∑
i=1

lixi),

with ai, bi, . . . , li ∈ R, i = 1, . . . , n.
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Proposition Let f : V → W be a linear transformation. Given a
set {u1, . . . , um} of vectors in V , the following statements hold:

1. Given λ1, . . . , λm ∈ R then

f (

m∑
i=1

λiui) =

m∑
i=1

λif (ui).

In particular, f (0V ) = 0W and f (−u) = −f (u), ∀u ∈ V .

2. If u1, . . . , um are linearly dependent then

f (u1), . . . , f (um)

are also linearly dependent.
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3. If f (u1), . . . , f (um) are linearly independent then u1, . . . , um
are linearly independent. The converse is not true, in gen-
eral, the linear independence of vectors is not preserved by
linear transformations.

4. If U is a vector subspace of V with basis {u1, . . . , um} then
f (U) = 〈f (u1), . . . , f (um)〉. This is {f (u1), . . . , f (um)} is a
generating set of f (U) but it may not be a basis of f (U).
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Examples Let us consider the linear transformation f : R3 → R2

defined by
f (x, y, z) = (x, y).

1. The vectors v1 = (1, 0, 0) and v2 = (0, 1, 0) are linearly inde-
pendent and so are their images, f (v1) = (1, 0) and f (v2) =
(0, 1). On the other hand, the vectors u1 = (1, 0, 1) and u2 =
(2, 0, 0) are linearly independent but their images f (u1) =
(1, 0) and f (u2) = (2, 0) are linearly dependent.

2. Given the subspace U = 〈u1 = (1, 0, 1), u2 = (2, 0, 0)〉, with
dimU = 2, of R3 then f (U) = 〈f (u1), f (u2)〉 = 〈(1, 0)〉 and so
dim f (U) = 1.
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THE MATRIX OF A LINEAR TRANSFORMATION
Proposition LetB = {v1, . . . , vn} be a basis of V and {w1, . . . , wn}
a set of vectors in W . There exists a unique linear transforma-
tion f : V → W such that

f (v1) = w1, . . . , f (vn) = wn.

Example Let f : R3 → R4 be a linear application verifying:
f (1, 0, 0) = (3, 1, 2, 4), f (0, 1, 0) = (1,−1,−5, 5),

f (0, 0, 1) = (2,−2,−3, 4).
By the previous proposition, there exists a unique linear trans-
formation verifying the previous conditions. Such transforma-
tion is defined by:
f (x, y, z) = xf (1, 0, 0) + yf (0, 1, 0) + zf (0, 0, 1) =

= (3x + y + 2z, x− y − 2z, 2x− 5y − 3z, 4x + 5y + 4z).
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Definition LetBV = {v1, . . . , vn} be a basis of V and let (x1, . . . , xn)
be the coordinates of a generic vector in V with respect to the
basis BV . Let BW = {w1, . . . , wm} be a basis of W and let
(y1, . . . , ym) be the coordinates of a generic vector in W with
respect to the basis BW .

Let us suppose that f : V → W is a linear transformation such
that

f (vj) =

m∑
i=1

aijwi = a1jw1 + a2jw2 + . . . + amjwm,

this is, the coordinates of f (vj) in the basisBW are (a1j, . . . , amj).
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The matrix expression of f in BV of V and BW of W is
y1
y2
...
ym

 =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . .

am1 am2 . . . amn



x1
x2
...
xn

 .

We say that A = (aij) is the matrix of the linear transformation f with respect
to the basis BV of V and BW of W , which is denoted by Mf(BV , BW ).

If f : V → V is an endomorphism we denote byMf(BV ) the matrixMf(BV , BV ).

Example Let f : R3 →R2 be the linear transformation verifying

f (1, 1, 1) = (2, 2), f (0, 1, 1) = (1, 1), f (0, 0, 3) = (0, 3).

We obtain next the matrix expression of f in the standard basis B3 of R3

and B2 of R2.
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For this purpose we compute the images of the vectors in the
basis B3.

f (1, 0, 0) = f (1, 1, 1)− f (0, 1, 1) = (2, 2)− (1, 1) = (1, 1),

f (0, 1, 0) = f (0, 1, 1)− 1

3
f (0, 0, 3) = (1, 1)− (0, 1) = (1, 0),

f (0, 0, 1) =
1

3
f (0, 0, 3) = (0, 1).

The columns of Mf(B3, B2) are the coordinates in the basis B2

os such images. Thus, the matrix expression is(
y1
y2

)
=

(
1 1 0
1 0 1

) x1
x2
x3

 .

Then f (x1, x2, x3) = (x1 + x2, x1 + x3) for every (x1, x2, x3) ∈ R3.
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KERNEL AND IMAGE

Proposition Let f : V −→ W be a linear transformation. The
following statements hold:

1. The image Im(f ) = {f (v) | v ∈ V } is a vector subspace of
W , which is called the image of the linear transformation f .

2. If {v1, . . . , vn} is a generating set of V then {f (v1), . . . , f (vn)}
is a generating set of Im(f ). We call rank of f to the dimen-
sion of Im(f )

rank(f ) = dim(Im(f )).
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3. We define the kernel of the linear transformation f as the
set of vectors in V whose image through f is the zero vector
0W ,

Ker(f ) = {v ∈ V |f (v) = 0W}.
Then Ker(f ) is a vector subspace of V and Ker(f ) = f−1(0W ).

Proposition Let f : V → W be a linear transformation. If V is a
finitely generated vector space then:

dim(Ker(f )) + dim(Im(f )) = dimV.

Proposition The linear transformation f : V → W is injective if
and only if

Ker(f ) = {0V }.
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Proposition Let f : V → W be a linear transformation.

1. If V is finitely generated, then f is injective if and only if
dimV = dim(f (V )).

2. Let B = {v1, . . . , vn} be a basis of V . f is one-to-one if and
only if f (B) = {f (v1), . . . , f (vn)} is a basis of Im(f ) if and
only if f (B) is linearly independent.

Definition An isomorphism is a linear and bijective transforma-
tion f : V → W . If f is an isomorphism then the vector spaces
V and W are isomorphic.
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Proposition

1. A linear transformation f : V → W is bijective if and only if

Im(f ) = W and Ker(f ) = {0V }.

2. An endomorphism f : V → V is bijective if and only if f is
injective and surjective.

Example Let h : R3→ R2 be the linear transformation defined
by h(x1, x2, x3) = (2x1+2x2−3x3, 3x1+x2−2x3). We obtain next
the cartesian equations of Ker(h) and a basis of Im(h) in B3 of
R3 and B2 of R2.
The matrix of h is

Mh(B3, B2) =

(
2 2 −3
3 1 −2

)
.
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A vector (x1, x2, x3) in R3 belongs to Ker(h) if(
2 2 −3
3 1 −2

) x1
x2
x3

 =

 0
0
0


equivalently

Cartesian equations of Ker(h)
{
2x1 + 2x2 − 3x3 = 0
3x1 + x2 − 2x3 = 0,

Also

Im(h) = 〈h(1, 0, 0), h(0, 1, 0), h(0, 0, 1)〉 =
= 〈(2, 3), (2, 1), (−3,−2)〉 = 〈(2, 3), (2, 1)〉.

Then {(2, 3), (2, 1)} is a basis of Im(h).
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Theorem Let us suppose that dimV = n, then V is isomorphic
to Rn.

Example Let V be a real vector space with dimV = 3. Let
B = {u1, u2, u3} be a basis of V and let B3 = {e1, e2, e3} be
the standard basis of R3. The linear transformation f : V → R3

determined by the conditions f (u1) = e1, f (u2) = e2 and f (u3) =
e3 is an isomorphism. Then V and R3 are isomorphic.
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OPERATIONS WITH LINEAR TRANSFORMATIONS

Let BV and BW be basis of V and W respectively. Given two
linear transformations f : V → W , g : V → W and a scalar
λ ∈ R, we define the following operations between linear trans-
formations:

1. Sum f + g : V → W given by (f + g)(v) = f (v) + g(v) for
every v ∈ V .

2. Multiplication by a scalar λf : V → W given by (λf )(v) =
λf (v) for every v ∈ V .

It holds that

Mf+g(BV , BW ) =Mf(BV , BW ) +Mg(BV , BW ),

Mλf(BV , BW ) = λMf(BV , BW ).
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Let U be a real vector space and BU a basis of U . Given two
linear transformations f : V → W and g : W → U the compo-
sition g ◦ f : V → U is a linear transformation with matrix

Mg◦f(BV , BU) =Mg(BW , BU)Mf(BV , BW ).

If V is finitely generated, a linear transformation f : V → W is
an isomorphism if and only if

dimV = dim(Im(f )) = dimW.

Then, if dimV = n the matrix Mf(BV , BW ) is squared of size
n× n and

rank(Mf(BV , BW )) = rank(Im(f )) = dim(Im(f )) = n,

Mf(BV , BW ) has nonzero determinant and therefore it is an in-
vertible matrix.
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The inverse f−1 : W → V is also an isomorphism with matrix

Mf−1(BW , BV ) = (Mf(BV , BW ))−1.

Example Let us consider the linear transformations f, g : R3 →
R3,

f (x, y, z) = (4x− y, z + x, x), g(x, y, z) = (y, 2z + 3x, z).

We obtain next the matrices of f − 2g, f ◦ g, g ◦ f with respect
to the standard basis B of R3.

Mf(B) =

 4 −1 0
1 0 1
1 0 0

 , Mg(B) =

 0 1 0
3 0 2
0 0 1

 ,

Mf−2g(B) =Mf(B)− 2Mg(B) =

 4 −3 0
−5 0 −3
1 0 −2

 ,
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Mf◦g(B) =Mf(B)Mg(B) =

 −3 4 −2
0 1 1

0 1 0

 ,

Mg◦f(B) =Mg(B)Mf(B) =

 1 0 1

14 −3 0

1 0 0

 .

This shows that the composition of linear transformations is not commuta-
tive in general.
Furthermore f and g are invertible linear transformations since

det(Mf(B)) 6= 0 and det(Mg(B)) 6= 0.

The inverse linear transformations f−1, g−1 : R3 → R3 have matrices

Mf−1(B) =

 0 0 1

−1 0 4

0 1 −1

 , Mg−1(B) =

 0 0 −2/3
1 0 0

0 0 1

 .
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VECTOR INTERPRETATION OF A SYSTEM OF LINEAR
EQUATIONS

Given a system of linear equations in the variables x1, x2, . . . , xn
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

where m ≥ 1, aij, bi ∈ R, i = 1, . . . ,m, j = 1, . . . , n and matrix
equation AX = b

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

 , X =


x1
x2
...
xn

 , b =


b1
b2
...
bm

 ,

with A ∈Mm×n(R) and b ∈Mm×1(R).
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A solution (s1, . . . , sn) of the system verifies

s1


a11
a21
...
am1

 + s2


a12
a22
...
am2

 + · · · + sn


a1n
a2n
...
amn

 =


b1
b2
...
bm

 .

That is (b1, . . . , bm) is a linear combination of the column vectors
of the coefficient matrix of the system.
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Let f : Rn → Rm be the linear transformation with matrix A in
the standard basis of Rn and Rm. The following items hold:

1. (b1, . . . , bm) ∈ Im(f )⇔ AX = b has a solution.

2. Let S = (s1, . . . , sn) ∈ Rn be a solution of AX = b. The
solution set of AX = b equals the set of vectors whose
image is (b1, . . . , bm)

f−1(b1, . . . , bm) = S + Ker(f ),

where Ker(f ) is the set of solutions of the system AX = 0.
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Example Let f : R4 → R2 be the linear transformation whose
matrix in the standard basis of R4 and R2 is

A =

(
2 0 −1 2
1 −3 2 1

)
.

The vectors whose image is v = (1,−1) ∈ R2 are the vectors in
the set f−1(v), the solutions of(

2 0 −1 2
1 −3 2 1

)
x1
x2
x3
x4

 =

(
1
−1

)
,

that is
(0,−1/3,−1, 0) + 〈(3, 5, 6, 0), (0, 5, 6, 3)〉

where (0,−1/3,−1, 0) is a vector of f−1(v) and
Ker(f ) = 〈(3, 5, 6, 0), (0, 5, 6, 3)〉.
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CHANGE OF COORDINATES

Assume that dimV = n. LetB = {v1, . . . , vn} andB′ = {v′1, . . . , v′n}
be bases of V . Given a vector v ∈ V , denote by (x1, . . . , xn)B its
coordinates w.r.t. B and (x′1, . . . , x

′
n)B′ its coordinates w.r.t. B′.

Assume that the coordinates of the vectors of the basis B′ w.r.t.
the basis B are known, namely

v′1 = a11v1 + a21v2 + · · · + an1vn,

v′2 = a12v1 + a22v2 + · · · + an2vn,
...

v′1 = a1nv1 + a2nv2 + · · · + annvn.
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Then, it holds
x1
x2
...
xn

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...
an1 an2 . . . ann



x′1
x′2...
x′n

 .

The matrix (aij) is the change of coordinates matrix from B′ to
B: the matrix whose columns are the coordinates of the vectors
in B′ w.r.t. B. It is denoted by M(B′, B).

The change of coordinates matrix from B to B′ is denoted by
M(B,B′) and it verifies

M(B,B′) =M(B′, B)−1
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then 
x′1
x′2...
x′n

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...
an1 an2 . . . ann


−1

x1
x2
...
xn

 .

Remark The matrix M(B′, B) is the matrix of an isomorphism
from Rn to Rn.
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Example Let B be the standard basis of R3 and let

B′ = {(1, 3, 0), (1, 0, 2), (0, 4,−2)}

be another basis of R3. Then, the matrix of the change of coor-
dinates from B′ to B is

M(B′, B) =

 1 1 0
3 0 4
0 2 −2

 .

Let v be a vector with coordinates (1, 1, 2)B′, its coordinates in
the basis B are (2, 11,−2)B and they are obtained by: 2

11
−2

 =

 1 1 0
3 0 4
0 2 −2

 1
1
2

 .
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EQUIVALENT MATRICES

Let us assume that dimV = n and dimW = m.

Proposition Let f : V → W be a linear transformation. Given
BV and B′V of V , and BW and B′W of W , it holds

Mf(B
′
V , B

′
W ) =M(BW , B

′
W )Mf(BV , BW )M(B′V , BV ).

Definition Two matricesA,A′ ∈Mm×n(R) are equivalent if there
exist invertible matrices P ∈Mn×n(R) and Q ∈Mm×m(R) such
that

A′ = Q−1AP.

Equivalently, A and A′ are matrices of the same linear transfor-
mation f : Rn → Rm in different basis.
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Example Let f : R3 → R2 be the matrix of a linear transforma-
tion in the standard basis B3 of R3 and B2 of R2

Mf(B3, B2) =

(
3 0 −2
−1 4 5

)
.

Also consider B′3 = {(1, 3, 0), (1, 0, 2), (0, 4,−2)} of R3 and B′2 =
{(2, 1), (4, 3)} of R2.
We have

Mf(B
′
3, B

′
2) =M(B2, B

′
2)Mf(B3, B2)M(B′3, B3),

This is

Mf(B
′
3, B

′
2) =

(
2 4
1 3

)−1(
3 0 −2
−1 4 5

) 1 1 0
3 0 4
0 2 −2


=

(
−35/2 −39/2 −6
19/2 19/2 4

)
.
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Proposition Let f : V → V be an endomorphism. Given bases
BV and B′V of V . Then

Mf(B
′
V ) =M(BV , B

′
V )Mf(BV )M(B′V , BV ).

Two matrices A,A′ ∈Mn×n(R) verifying

A′ = P−1AP,

for some invertible matrix P ∈ Mn×n(R), are matrices of an
endomorphism f : Rn → Rn in two different bases.
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Example Let f : R3 → R3 be an endomorphism whose matrix in the stan-
dard basis B of R3 is

Mf(B) =

 2 0 1

0 1 1

−1 1 3

 .

We also consider the basis B′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} of R3.
Then

Mf(B
′) =M(B′, B)−1Mf(B)M(B′, B),

that is

Mf(B
′) =

 1/2 1/2 −1/2
1/2 −1/2 1/2

−1/2 1/2 1/2

 2 0 1

0 1 1

−1 1 3

 1 1 0

1 0 1

0 1 1


=

 3/2 1 −1/2
1/2 2 3/2

−1/2 0 5/2

 .


