MAPS BETWEEN SETS

Let A, B and C be nonempty sets.

Definition A map $f: A \rightarrow B$ is a correspondence assigning to each element of A a unique element in B. The set A is called domain of the map f and the set B is the range of f.

Given $a \in A$ we denote by $f(a)$ the image element of a in B through the map f. The image of f is the set

$$
\operatorname{Im}(f)=f(A)=\{f(a) \mid a \in A\} .
$$

The inverse image of an element $b \in B$ is the set

$$
f^{-1}(b)=\{a \in A \mid f(a)=b\} .
$$

The identity map A is the map $i d_{A}: A \rightarrow A$ defined by $i d_{A}(a)=$ a for every $a \in A$.

Definition Given a map $f: A \rightarrow B$ we call f :

1. Injective or one-to-one if given two different elements of A their images through f are distinct. That is

$$
\forall a_{1}, a_{2} \in A, a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right) .
$$

Equivalently,

$$
\text { if } \exists a_{1}, a_{2} \in A \text { such that } f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2} .
$$

2. Surjective if every element in B is the image through f of an element of A. That is, $f(A)=B$,

$$
\forall b \in B, \exists a \in A \text { such that } f(a)=b .
$$

3. Bijective if it is injective and surjective.

Definition Given two maps $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition of f with g is the map $g \circ f: A \rightarrow C$ defined by $(g \circ f)(a)=g(f(a))$ for every $a \in A$.

Definition Given a bijective map $f: A \rightarrow B$ the inverse map of f is the map $f^{-1}: B \rightarrow A$ defined by:

$$
\forall b \in B, f^{-1}(b)=a \text { if } f(a)=b \text { with } a \in A .
$$

It holds that $f^{-1} \circ f=i d_{A}$ and that $f \circ f^{-1}=i d_{B}$.

7. LINEAR TRANSFORMATIONS

Let V and W be real vector spaces.
Definition A map $f: V \rightarrow W$ is a linear transformation (or homomorphism) if it verifies

$$
\begin{aligned}
& \forall u, v \in V, f(u+v)=f(u)+f(v), \\
& \forall \lambda \in \mathbb{R}, f(\lambda u)=\lambda f(u) .
\end{aligned}
$$

This is equivalent to

$$
\forall u, v \in V, \forall \lambda, \mu \in \mathbb{R}, f(\lambda u+\mu v)=\lambda f(u)+\mu f(v) .
$$

A linear transformation $f: V \rightarrow W$ where $W=V$ is called endomorphism.

Example The map $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined by

$$
f(x, y, z)=(2 x-y+4 z, 3 x-z, 6 x+y)
$$

is linear.
It is also linear every transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} b_{i} x_{i}, \ldots, \sum_{i=1}^{n} l_{i} x_{i}\right),
$$

with $a_{i}, b_{i}, \ldots, l_{i} \in \mathbb{R}, i=1, \ldots, n$.

Proposition Let $f: V \rightarrow W$ be a linear transformation. Given a set $\left\{u_{1}, \ldots, u_{m}\right\}$ of vectors in V, the following statements hold:

1. Given $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ then

$$
f\left(\sum_{i=1}^{m} \lambda_{i} u_{i}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(u_{i}\right)
$$

In particular, $f\left(0_{V}\right)=0_{W}$ and $f(-u)=-f(u), \forall u \in V$.
2. If u_{1}, \ldots, u_{m} are linearly dependent then

$$
f\left(u_{1}\right), \ldots, f\left(u_{m}\right)
$$

are also linearly dependent.
3. If $f\left(u_{1}\right), \ldots, f\left(u_{m}\right)$ are linearly independent then u_{1}, \ldots, u_{m} are linearly independent. The converse is not true, in general, the linear independence of vectors is not preserved by linear transformations.
4. If U is a vector subspace of V with basis $\left\{u_{1}, \ldots, u_{m}\right\}$ then $f(U)=\left\langle f\left(u_{1}\right), \ldots, f\left(u_{m}\right)\right\rangle$. This is $\left\{f\left(u_{1}\right), \ldots, f\left(u_{m}\right)\right\}$ is a generating set of $f(U)$ but it may not be a basis of $f(U)$.

Examples Let us consider the linear transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y, z)=(x, y)
$$

1. The vectors $v_{1}=(1,0,0)$ and $v_{2}=(0,1,0)$ are linearly independent and so are their images, $f\left(v_{1}\right)=(1,0)$ and $f\left(v_{2}\right)=$ $(0,1)$. On the other hand, the vectors $u_{1}=(1,0,1)$ and $u_{2}=$ $(2,0,0)$ are linearly independent but their images $f\left(u_{1}\right)=$ $(1,0)$ and $f\left(u_{2}\right)=(2,0)$ are linearly dependent.
2. Given the subspace $U=\left\langle u_{1}=(1,0,1), u_{2}=(2,0,0)\right\rangle$, with $\operatorname{dim} U=2$, of \mathbb{R}^{3} then $f(U)=\left\langle f\left(u_{1}\right), f\left(u_{2}\right)\right\rangle=\langle(1,0)\rangle$ and so $\operatorname{dim} f(U)=1$.

THE MATRIX OF A LINEAR TRANSFORMATION

Proposition Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $\left\{w_{1}, \ldots, w_{n}\right\}$ a set of vectors in W. There exists a unique linear transformation $f: V \rightarrow W$ such that

$$
f\left(v_{1}\right)=w_{1}, \ldots, f\left(v_{n}\right)=w_{n} .
$$

Example Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear application verifying:

$$
\begin{aligned}
f(1,0,0)= & (3,1,2,4), f(0,1,0)=(1,-1,-5,5), \\
& f(0,0,1)=(2,-2,-3,4) .
\end{aligned}
$$

By the previous proposition, there exists a unique linear transformation verifying the previous conditions. Such transformation is defined by:

$$
\begin{aligned}
f(x, y, z) & =x f(1,0,0)+y f(0,1,0)+z f(0,0,1)= \\
& =(3 x+y+2 z, x-y-2 z, 2 x-5 y-3 z, 4 x+5 y+4 z) .
\end{aligned}
$$

Definition Let $B_{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and let $\left(x_{1}, \ldots, x_{n}\right)$ be the coordinates of a generic vector in V with respect to the basis B_{V}. Let $B_{W}=\left\{w_{1}, \ldots, w_{m}\right\}$ be a basis of W and let $\left(y_{1}, \ldots, y_{m}\right)$ be the coordinates of a generic vector in W with respect to the basis B_{W}.

Let us suppose that $f: V \rightarrow W$ is a linear transformation such that

$$
f\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i}=a_{1 j} w_{1}+a_{2 j} w_{2}+\ldots+a_{m j} w_{m}
$$

this is, the coordinates of $f\left(v_{j}\right)$ in the basis B_{W} are $\left(a_{1 j}, \ldots, a_{m j}\right)$.

The matrix expression of f in B_{V} of V and B_{W} of W is

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \ldots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

We say that $A=\left(a_{i j}\right)$ is the matrix of the linear transformation f with respect to the basis B_{V} of V and B_{W} of W, which is denoted by $M_{f}\left(B_{V}, B_{W}\right)$.

If $f: V \rightarrow V$ is an endomorphism we denote by $M_{f}\left(B_{V}\right)$ the matrix $M_{f}\left(B_{V}, B_{V}\right)$.
Example Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation verifying

$$
f(1,1,1)=(2,2), f(0,1,1)=(1,1), f(0,0,3)=(0,3) .
$$

We obtain next the matrix expression of f in the standard basis B_{3} of \mathbb{R}^{3} and B_{2} of \mathbb{R}^{2}.

For this purpose we compute the images of the vectors in the basis B_{3}.

$$
\begin{aligned}
& f(1,0,0)=f(1,1,1)-f(0,1,1)=(2,2)-(1,1)=(1,1), \\
& f(0,1,0)=f(0,1,1)-\frac{1}{3} f(0,0,3)=(1,1)-(0,1)=(1,0), \\
& f(0,0,1)=\frac{1}{3} f(0,0,3)=(0,1) .
\end{aligned}
$$

The columns of $M_{f}\left(B_{3}, B_{2}\right)$ are the coordinates in the basis B_{2} os such images. Thus, the matrix expression is

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Then $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{1}+x_{3}\right)$ for every $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.

KERNEL AND IMAGE

Proposition Let $f: V \longrightarrow W$ be a linear transformation. The following statements hold:

1. The image $\operatorname{Im}(f)=\{f(v) \mid v \in V\}$ is a vector subspace of W, which is called the image of the linear transformation f.
2. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a generating set of V then $\left\{f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right\}$ is a generating set of $\operatorname{Im}(f)$. We call rank of f to the dimension of $\operatorname{Im}(f)$

$$
\operatorname{rank}(f)=\operatorname{dim}(\operatorname{Im}(f)) .
$$

3. We define the kernel of the linear transformation f as the set of vectors in V whose image through f is the zero vector 0_{W},

$$
\operatorname{Ker}(f)=\left\{v \in V \mid f(v)=0_{W}\right\} .
$$

Then $\operatorname{Ker}(f)$ is a vector subspace of V and $\operatorname{Ker}(f)=f^{-1}\left(0_{W}\right)$.
Proposition Let $f: V \rightarrow W$ be a linear transformation. If V is a finitely generated vector space then:

$$
\operatorname{dim}(\operatorname{Ker}(f))+\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim} V .
$$

Proposition The linear transformation $f: V \rightarrow W$ is injective if and only if

$$
\operatorname{Ker}(f)=\left\{0_{V}\right\} .
$$

Proposition Let $f: V \rightarrow W$ be a linear transformation.

1. If V is finitely generated, then f is injective if and only if $\operatorname{dim} V=\operatorname{dim}(f(V))$.
2. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. f is one-to-one if and only if $f(B)=\left\{f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right\}$ is a basis of $\operatorname{Im}(f)$ if and only if $f(B)$ is linearly independent.

Definition An isomorphism is a linear and bijective transformation $f: V \rightarrow W$. If f is an isomorphism then the vector spaces V and W are isomorphic.

Proposition

1. A linear transformation $f: V \rightarrow W$ is bijective if and only if

$$
\operatorname{Im}(f)=W \text { and } \operatorname{Ker}(f)=\left\{0_{V}\right\} .
$$

2. An endomorphism $f: V \rightarrow V$ is bijective if and only if f is injective and surjective.

Example Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $h\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+2 x_{2}-3 x_{3}, 3 x_{1}+x_{2}-2 x_{3}\right)$. We obtain next the cartesian equations of $\operatorname{Ker}(h)$ and a basis of $\operatorname{Im}(h)$ in B_{3} of \mathbb{R}^{3} and B_{2} of \mathbb{R}^{2}.
The matrix of h is

$$
M_{h}\left(B_{3}, B_{2}\right)=\left(\begin{array}{lll}
2 & 2 & -3 \\
3 & 1 & -2
\end{array}\right) .
$$

A vector $\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} belongs to $\operatorname{Ker}(h)$ if

$$
\left(\begin{array}{lll}
2 & 2 & -3 \\
3 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

equivalently

$$
\text { Cartesian equations of } \operatorname{Ker}(h)\left\{\begin{array}{l}
2 x_{1}+2 x_{2}-3 x_{3}=0 \\
3 x_{1}+x_{2}-2 x_{3}=0,
\end{array}\right.
$$

Also

$$
\begin{aligned}
& \operatorname{Im}(h)=\langle h(1,0,0), h(0,1,0), h(0,0,1)\rangle= \\
& =\langle(2,3),(2,1),(-3,-2)\rangle=\langle(2,3),(2,1)\rangle .
\end{aligned}
$$

Then $\{(2,3),(2,1)\}$ is a basis of $\operatorname{Im}(h)$.

Theorem Let us suppose that $\operatorname{dim} V=n$, then V is isomorphic to \mathbb{R}^{n}.

Example Let V be a real vector space with $\operatorname{dim} V=3$. Let $B=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis of V and let $B_{3}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. The linear transformation $f: V \rightarrow \mathbb{R}^{3}$ determined by the conditions $f\left(u_{1}\right)=e_{1}, f\left(u_{2}\right)=e_{2}$ and $f\left(u_{3}\right)=$ e_{3} is an isomorphism. Then V and \mathbb{R}^{3} are isomorphic.

OPERATIONS WITH LINEAR TRANSFORMATIONS

Let B_{V} and B_{W} be basis of V and W respectively. Given two linear transformations $f: V \rightarrow W, g: V \rightarrow W$ and a scalar $\lambda \in \mathbb{R}$, we define the following operations between linear transformations:

1. Sum $f+g: V \rightarrow W$ given by $(f+g)(v)=f(v)+g(v)$ for every $v \in V$.
2. Multiplication by a scalar $\lambda f: V \rightarrow W$ given by $(\lambda f)(v)=$ $\lambda f(v)$ for every $v \in V$.
It holds that

$$
\begin{aligned}
M_{f+g}\left(B_{V}, B_{W}\right) & =M_{f}\left(B_{V}, B_{W}\right)+M_{g}\left(B_{V}, B_{W}\right), \\
M_{\lambda f}\left(B_{V}, B_{W}\right) & =\lambda M_{f}\left(B_{V}, B_{W}\right) .
\end{aligned}
$$

Let U be a real vector space and B_{U} a basis of U. Given two linear transformations $f: V \rightarrow W$ and $g: W \rightarrow U$ the composition $g \circ f: V \rightarrow U$ is a linear transformation with matrix

$$
M_{g \circ f}\left(B_{V}, B_{U}\right)=M_{g}\left(B_{W}, B_{U}\right) M_{f}\left(B_{V}, B_{W}\right) .
$$

If V is finitely generated, a linear transformation $f: V \rightarrow W$ is an isomorphism if and only if

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{Im}(f))=\operatorname{dim} W
$$

Then, if $\operatorname{dim} V=n$ the matrix $M_{f}\left(B_{V}, B_{W}\right)$ is squared of size $n \times n$ and

$$
\operatorname{rank}\left(M_{f}\left(B_{V}, B_{W}\right)\right)=\operatorname{rank}(\operatorname{Im}(f))=\operatorname{dim}(\operatorname{Im}(f))=n,
$$

$M_{f}\left(B_{V}, B_{W}\right)$ has nonzero determinant and therefore it is an invertible matrix.

The inverse $f^{-1}: W \rightarrow V$ is also an isomorphism with matrix

$$
M_{f^{-1}}\left(B_{W}, B_{V}\right)=\left(M_{f}\left(B_{V}, B_{W}\right)\right)^{-1}
$$

Example Let us consider the linear transformations $f, g: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{3},

$$
f(x, y, z)=(4 x-y, z+x, x), \quad g(x, y, z)=(y, 2 z+3 x, z) .
$$

We obtain next the matrices of $f-2 g, f \circ g, g \circ f$ with respect to the standard basis B of \mathbb{R}^{3}.

$$
\begin{aligned}
M_{f}(B) & =\left(\begin{array}{ccc}
4 & -1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), M_{g}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
3 & 0 & 2 \\
0 & 0 & 1
\end{array}\right), \\
M_{f-2 g}(B) & =M_{f}(B)-2 M_{g}(B)=\left(\begin{array}{ccc}
4 & -3 & 0 \\
-5 & 0 & -3 \\
1 & 0 & -2
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& M_{f \circ g}(B)=M_{f}(B) M_{g}(B)=\left(\begin{array}{ccc}
-3 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \\
& M_{g \circ f}(B)=M_{g}(B) M_{f}(B)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
14 & -3 & 0 \\
1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

This shows that the composition of linear transformations is not commutative in general.
Furthermore f and g are invertible linear transformations since

$$
\operatorname{det}\left(M_{f}(B)\right) \neq 0 \text { and } \operatorname{det}\left(M_{g}(B)\right) \neq 0
$$

The inverse linear transformations $f^{-1}, g^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ have matrices

$$
M_{f^{-1}}(B)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 4 \\
0 & 1 & -1
\end{array}\right), M_{g^{-1}}(B)=\left(\begin{array}{ccc}
0 & 0 & -2 / 3 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

VECTOR INTERPRETATION OF A SYSTEM OF LINEAR EQUATIONS

Given a system of linear equations in the variables $x_{1}, x_{2}, \ldots, x_{n}$

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

where $m \geq 1, a_{i j}, b_{i} \in \mathbb{R}, i=1, \ldots, m, j=1, \ldots, n$ and matrix equation $A X=b$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right),
$$

with $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $b \in \mathcal{M}_{m \times 1}(\mathbb{R})$.

A solution $\left(s_{1}, \ldots, s_{n}\right)$ of the system verifies

$$
s_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+s_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+s_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) .
$$

That is $\left(b_{1}, \ldots, b_{m}\right)$ is a linear combination of the column vectors of the coefficient matrix of the system.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation with matrix A in the standard basis of \mathbb{R}^{n} and \mathbb{R}^{m}. The following items hold:

1. $\left(b_{1}, \ldots, b_{m}\right) \in \operatorname{Im}(f) \Leftrightarrow A X=b$ has a solution.
2. Let $S=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ be a solution of $A X=b$. The solution set of $A X=b$ equals the set of vectors whose image is $\left(b_{1}, \ldots, b_{m}\right)$

$$
f^{-1}\left(b_{1}, \ldots, b_{m}\right)=S+\operatorname{Ker}(f)
$$

where $\operatorname{Ker}(f)$ is the set of solutions of the system $A X=0$.

Example Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be the linear transformation whose matrix in the standard basis of \mathbb{R}^{4} and \mathbb{R}^{2} is

$$
A=\left(\begin{array}{cccc}
2 & 0 & -1 & 2 \\
1 & -3 & 2 & 1
\end{array}\right)
$$

The vectors whose image is $v=(1,-1) \in \mathbb{R}^{2}$ are the vectors in the set $f^{-1}(v)$, the solutions of

$$
\left(\begin{array}{cccc}
2 & 0 & -1 & 2 \\
1 & -3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{1}{-1},
$$

that is

$$
(0,-1 / 3,-1,0)+\langle(3,5,6,0),(0,5,6,3)\rangle
$$

where $(0,-1 / 3,-1,0)$ is a vector of $f^{-1}(v)$ and

$$
\operatorname{Ker}(f)=\langle(3,5,6,0),(0,5,6,3)\rangle .
$$

CHANGE OF COORDINATES

Assume that $\operatorname{dim} V=n$. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $B^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be bases of V. Given a vector $v \in V$, denote by $\left(x_{1}, \ldots, x_{n}\right)_{B}$ its coordinates w.r.t. B and $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)_{B^{\prime}}$ its coordinates w.r.t. B^{\prime}.

Assume that the coordinates of the vectors of the basis B^{\prime} w.r.t. the basis B are known, namely

$$
\begin{aligned}
& v_{1}^{\prime}=a_{11} v_{1}+a_{21} v_{2}+\cdots+a_{n 1} v_{n} \\
& v_{2}^{\prime}=a_{12} v_{1}+a_{22} v_{2}+\cdots+a_{n 2} v_{n} \\
& \vdots \\
& v_{1}^{\prime}=a_{1 n} v_{1}+a_{2 n} v_{2}+\cdots+a_{n n} v_{n}
\end{aligned}
$$

Then, it holds

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right) .
$$

The matrix $\left(a_{i j}\right)$ is the change of coordinates matrix from B^{\prime} to B : the matrix whose columns are the coordinates of the vectors in B^{\prime} w.r.t. B. It is denoted by $M\left(B^{\prime}, B\right)$.

The change of coordinates matrix from B to B^{\prime} is denoted by $M\left(B, B^{\prime}\right)$ and it verifies

$$
M\left(B, B^{\prime}\right)=M\left(B^{\prime}, B\right)^{-1}
$$

then

$$
\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)^{-1}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Remark The matrix $M\left(B^{\prime}, B\right)$ is the matrix of an isomorphism from \mathbb{R}^{n} to \mathbb{R}^{n}.

Example Let B be the standard basis of \mathbb{R}^{3} and let

$$
B^{\prime}=\{(1,3,0),(1,0,2),(0,4,-2)\}
$$

be another basis of \mathbb{R}^{3}. Then, the matrix of the change of coordinates from B^{\prime} to B is

$$
M\left(B^{\prime}, B\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
3 & 0 & 4 \\
0 & 2 & -2
\end{array}\right) .
$$

Let v be a vector with coordinates $(1,1,2)_{B^{\prime}}$, its coordinates in the basis B are $(2,11,-2)_{B}$ and they are obtained by:

$$
\left(\begin{array}{c}
2 \\
11 \\
-2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
3 & 0 & 4 \\
0 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) .
$$

EQUIVALENT MATRICES

Let us assume that $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$.
Proposition Let $f: V \rightarrow W$ be a linear transformation. Given B_{V} and B_{V}^{\prime} of V, and B_{W} and B_{W}^{\prime} of W, it holds

$$
M_{f}\left(B_{V}^{\prime}, B_{W}^{\prime}\right)=M\left(B_{W}, B_{W}^{\prime}\right) M_{f}\left(B_{V}, B_{W}\right) M\left(B_{V}^{\prime}, B_{V}\right) .
$$

Definition Two matrices $A, A^{\prime} \in \mathcal{M}_{m \times n}(\mathbb{R})$ are equivalent if there exist invertible matrices $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $Q \in \mathcal{M}_{m \times m}(\mathbb{R})$ such that

$$
A^{\prime}=Q^{-1} A P .
$$

Equivalently, A and A^{\prime} are matrices of the same linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ in different basis.

Example Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the matrix of a linear transformation in the standard basis B_{3} of \mathbb{R}^{3} and B_{2} of \mathbb{R}^{2}

$$
M_{f}\left(B_{3}, B_{2}\right)=\left(\begin{array}{ccc}
3 & 0 & -2 \\
-1 & 4 & 5
\end{array}\right)
$$

Also consider $B_{3}^{\prime}=\{(1,3,0),(1,0,2),(0,4,-2)\}$ of \mathbb{R}^{3} and $B_{2}^{\prime}=$ $\{(2,1),(4,3)\}$ of \mathbb{R}^{2}.
We have

$$
M_{f}\left(B_{3}^{\prime}, B_{2}^{\prime}\right)=M\left(B_{2}, B_{2}^{\prime}\right) M_{f}\left(B_{3}, B_{2}\right) M\left(B_{3}^{\prime}, B_{3}\right),
$$

This is

$$
\begin{aligned}
M_{f}\left(B_{3}^{\prime}, B_{2}^{\prime}\right) & =\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right)^{-1}\left(\begin{array}{ccc}
3 & 0 & -2 \\
-1 & 4 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
3 & 0 & 4 \\
0 & 2 & -2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-35 / 2 & -39 / 2 & -6 \\
19 / 2 & 19 / 2 & 4
\end{array}\right) .
\end{aligned}
$$

Proposition Let $f: V \rightarrow V$ be an endomorphism. Given bases B_{V} and B_{V}^{\prime} of V. Then

$$
M_{f}\left(B_{V}^{\prime}\right)=M\left(B_{V}, B_{V}^{\prime}\right) M_{f}\left(B_{V}\right) M\left(B_{V}^{\prime}, B_{V}\right) .
$$

Two matrices $A, A^{\prime} \in \mathcal{M}_{n \times n}(\mathbb{R})$ verifying

$$
A^{\prime}=P^{-1} A P,
$$

for some invertible matrix $P \in \mathcal{M}_{n \times n}(\mathbb{R})$, are matrices of an endomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ in two different bases.

Example Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an endomorphism whose matrix in the standard basis B of \mathbb{R}^{3} is

$$
M_{f}(B)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 3
\end{array}\right)
$$

We also consider the basis $B^{\prime}=\{(1,1,0),(1,0,1),(0,1,1)\}$ of \mathbb{R}^{3}.
Then

$$
M_{f}\left(B^{\prime}\right)=M\left(B^{\prime}, B\right)^{-1} M_{f}(B) M\left(B^{\prime}, B\right),
$$

that is

$$
\begin{aligned}
M_{f}\left(B^{\prime}\right) & =\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 / 2 & 1 & -1 / 2 \\
1 / 2 & 2 & 3 / 2 \\
-1 / 2 & 0 & 5 / 2
\end{array}\right) .
\end{aligned}
$$

