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MOTIVATION

The squared matrix

A =

 1 3 3
−3 −5 −3
3 3 1


and the diagonal matrix

D =

 1 0 0
0 −2 0
0 0 −2


verify

D = P−1AP where P =

 1 −1 −1
−1 1 0
1 0 1

 .
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Let V be a real vector space.

If f : V → V is an endomorphism, whose matrix D in some
basis of V is diagonal, then numerous problems related with f
are significantly simplified.

Some examples are: classify f ; obtain its invariants; compute
fn, n ∈ N.

Given a squared matrix A (associated to an endomorphism)
we explain next how to obtain a diagonal matrix D related with
A by

D = P−1AP where P =

 1 −1 −1
−1 1 0
1 0 1

 .
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EIGENVALUES AND EIGENVECTORS OF AN
ENDOMORPHISM
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Let V be a nonzero real vector space and f : V → V an endo-
morphism.

Definition A scalar λ ∈ R is an eigenvalue of f if there exists a
nonzero vector v ∈ V such that

f (v) = λv.

Definition If λ is an eigenvalue of f , a vector v ∈ V verifying
f (v) = λv is called eigenvector of f associated to λ.
Example Let f : R3 → R3 be the endomorphism defined by

f (x, y, z) = (x + 3y + 3z,−3x− 5y − 3z, 3x + 3y + z).

Then, λ = −2 is an eigenvalue of f because there exists a
nonzero vector v = (−1, 1, 0) such that f (v) = −2v. Thus v is
an eigenvector of f associated to λ = −2.
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Proposition The set of all the eigenvectors of f associated to
the same eigenvalue λ of f

Vλ = {v ∈ V | f (v) = λv}
is a vector subspace of V called eigenspace of f associated to
λ.
Remarks Let id : V → V be the identity map in V .
1. Vλ = Ker(f − λid).
2. λ ∈ R is an eigenvalue of f ⇔ the endomorphism f −λid is

not one-to-one.

3. In particular, λ = 0 is an eigenvalue of f ⇔ f is not one-to-
one⇔ Ker(f ) = V0 6= {0V }.

4. Some endomorphisms do not have eigenvalues, so they do
not have eigenvectors either.
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Proposition Let λ1, . . . , λp be p different eigenvalues of f .

1. Let vi be a nonzero eigenvector of f associated to λi, i =
1, . . . , p then v1, . . . , vp are linearly independent.

2. Vλ1 + · · · + Vλp is a direct sum.

Remark If dimV = n then the endomorphism f will have at
most n different eigenvalues, otherwise it would have more
than n linearly independent eigenvectors.
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EIGENVALUES AND EIGENVECTORS OF A SQUARED
MATRIX
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Let A be a squared n × n matrix whose entries are real num-
bers, that is A ∈Mn×n(R).

Definition A scalar λ ∈ R is an eigenvalue of A if there exists a
nonzero column vector X ∈Mn×1(R) such that

AX = λX.

Definition If λ is an eigenvalue of A, a column vector X ∈
Mn×1(R) verifying AX = λX is called an eigenvector of A as-
sociated to λ.

Let In be the identity matrix of size n× n.
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Remarks Let us assume that dimV = n and let B be a basis
of V . Let f : V → V be the endomorphism whose matrix in the
basis B is A. The following statements are verified:

1. λ is an eigenvalue of f ⇔ λ is an eigenvalue of A⇔ det(A−
λIn) = 0.

2. Let v ∈ V and let X be the column vector of the coordinates
of v in the basis B, that is X ∈ Mn×1(K). Then, v is an
eigenvector of f ⇔X is an eigenvector of A⇔ (A−λIn)X =
0.

3. dimVλ = n− rank(A− λIn).
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Example Let f : R3 → R3 be the endomorphism defined by

f (x, y, z) = (3x, x + 2y, 4x + 2z).

Let B be the standard basis of R3. The matrix of f in the basis B is

A =Mf(B) =

 3 0 0

1 2 0

4 0 2

 .

Since rank(A− 3I3) = 2 the system (A− 3I3)X = 0, that is 3− 3 0 0

1 2− 3 0

4 0 2− 3

 x1
x2
x3

 =

 0

0

0


has a nonzero solution. Therefore, λ = 3 is an eigenvalue of f and A. The
eigenspace V3 has dimV3 = 1 and cartesian equations

Cartesian equations of V3

{
x1 + x2 = 0

4x1 − x3 = 0
.
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Thus V3 = {(a, a, 4a) | a ∈ R}.
On the other hand, rank(A− 2I3) = 1, so λ = 2 is an eigenvalue of f and A,
dimV2 = 2. Solving (A− 2I3)X = 0, that is 3− 2 0 0

1 2− 2 0

4 0 2− 2

 x1
x2
x3

 =

 0

0

0


we have V2 = {(0, a, b) | a, b ∈ R} and the cartesian equation of V2 is x1 = 0.
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ROOTS OF POLYNOMIALS AND THEIR MULTIPLICITY

Let R[x] be the set of all polynomials in x with real coefficients.

Definition Let p(x) be a polynomial in R[x]. A scalar λ ∈ R is a
root of p(x) if p(λ) = 0.
Equivalently, λ is a root of p(x) if and only if (x−λ) divides p(x),
that is, there exists a polynomial q(x) ∈ R[x] such that

p(x) = (x− λ)q(x).

Definition Let λ be a root of the polynomial p(x). We call multi-
plicity of λ to the highest natural number m such that (x − λ)m
divides p(x), so

p(x) = (x− λ)mq(x), q(x) ∈ R[x].
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Every polynomial of degree greater or equal than one has all
its roots in C. On the other hand, there exist polynomials in R[x]
with no roots in R. As an example, x2 + 1 has real coefficients
but only complex roots.

Proposition Let p(x) ∈ R[x] be a polynomial of degree n whose
roots are real numbers λ1, . . . , λp with multiplicities m1, . . . ,mp

respectively. Then:

1. There exists q(x) ∈ R[x] such that p(x) = (x− λ1)m1 · · · (x−
λp)

mpq(x) so m1 + · · · +mp ≤ n.

2. Given p(x) ∈ C[x] all its roots are in C so

p(x) = (x− λ1)m1 · · · (x− λp)mp with m1 + · · · +mp = n.
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CHARACTERISTIC POLYNOMIAL
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Definition Let A ∈ Mn×n(R). The characteristic polynomial of
A is det(A− λIn) and its characteristic equation is

det(A− λIn) = 0.

Proposition Let A and A′ be matrices inMn×n(R). If A and A′

are matrices of the same endomorphism in different basis then
they have the same characteristic polynomial.

Let V be a nonzero real vector space and let f : V → V be an
endomorphism.
Remark

1. All the matrices associated to f in different bases of V have
the same characteristic polynomial.

2. The converse of the proposition is not true.
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Definition The characteristic polinomial of f is the characteristic
polynomial of any of the matrices associated to f in the differ-
ent bases of V . Analogously with the characteristic equation of
f .

Example Let us compute the characteristic polynomial of the
endomorphism f of R5 defined by

f (x1, x2, x3, x4, x5) = (−x2, x1 + x3, 2x3 − x4, 2x4 + 6x5, 3x5).

Let B be the standard basis of R5 and A =Mf(B), then:
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det(A− λI5) =

∣∣∣∣∣∣∣∣∣∣
0− λ −1 0 0 0
1 0− λ 1 0 0
0 0 2− λ −1 0
0 0 0 2− λ 6
0 0 0 0 3− λ

∣∣∣∣∣∣∣∣∣∣
=

=(3− λ)(2− λ)2
∣∣∣∣ 0− λ −1

1 0− λ

∣∣∣∣
=(3− λ)(2− λ)2(λ2 + 1).
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MULTIPLICITY OF AN EIGENVALUE
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Let V be a nonzero real vector space and f : V → V an endo-
morphism. Let A ∈Mn×n(R).

Definition Let λ be an eigenvalue of f (or A). We call multiplicity
of λ to its multiplicity as a root of the characteristic equation of
f (or A).

Theorem Let λ be an eigenvalue of f (or A) with multiplicity m.
Then

1 ≤ dimVλ ≤ m.

Remarks

1. Let λ be an eigenvalue of f (or A) with multiplicity m. If
m = 1 then dimVλ = 1
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2. If A,A′ ∈Mn×n(R) are matrices of the same endomorphism
in different bases then they have the same eigenvalues,
with the same multiplicities and the same dimensions of
their eigenspaces.

Proposition Let us suppose that dimV = n. Let λ1, . . . λp be
the distinct eigenvalues of f (or A), m1, . . . ,mp their multiplici-
ties and d1, . . . , dp the dimensions of the corresponding vector
subspaces. Then the maximum number of linearly independent
eigenvectors of f (or A) is d1 + · · · + dp. Furthermore,

p ≤ d1 + · · · + dp ≤ m1 + · · · +mp ≤ n.
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Remark The characteristic polynomial may not have only real
roots and then m1 + · · · +mp < n. In fact, it could have no real
roots and therefore no eigenvalues in this case.
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Example We obtain next the eigenvalues of the matrix A to-
gether with their multiplicities and the dimensions of the eigenspaces,

A =

 1 2 10
2 1 10
−1 −1 −6

 .

The characteristic polynomial is det(A− λI3) = λ3 + 4λ2 + 5λ +
2 = (λ + 2)(λ + 1)2. Then we have eigenvalues λ1 = −2 with
multiplicity m1 = 1 and λ2 = −1 with multiplicity m2 = 2. The
dimensions are

d1 = dimVλ1 = 3− rank(A− λ1I3) = 1,

d2 = dimVλ2 = 3− rank(A− λ2I3) = 2.
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DIAGONALIZATION OF ENDOMORPHISMS AND
SQUARED MATRICES
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Let V be a nonzero real vector space and let f : V → V be an
endomorphism. Let A ∈Mn×n(R).

Definition The endomorphism f is diagonalizable if there exists
a basis B′ of V so that the matrix of f , Mf(B

′) is diagonal.
Then, to diagonalize f is to find B′.

Definition The matrix A is diagonalizable if there exists a diag-
onal matrix D and an invertible matrix P ∈ Mn×n(R) such that
D = P−1AP . Then, to diagonalize A means to find D and P .



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

Remarks

1. Let us suppose that A is the matrix of f in a basis B. Then:

f is diagonalizable ⇔ A is diagonalizable.

2. If D = P−1AP is a diagonalization of A then

a) D = Mf(B
′) is the matrix of f in a basis B′ of V consist-

ing of eigenvectors.
b) P = M(B′, B) is the matrix of the change of coordinates

from B′ to B.

Proposition An endomorphism f is diagonalizable if and only if
there exists a basis of V consisting of eigenvectors of f .
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Theorem Let us suppose that dimV = n. Let λ1, . . . , λp be the
distinct eigenvalues of f (or A), m1, . . . ,mp their multiplicities
and d1, . . . , dp the dimensions of the corresponding subspaces.
The necessary and sufficient conditions for the existence of a
basis of V consisting of eigenvectors are:

1. The characteristic polynomial of f has only real roots

λ1, . . . , λp

, that is
m1 + . . . +mp = n.

2. The multiplicity of each eigenvalue equals the dimension of
its eigenspace, this is

mi = di, i = 1, . . . , p.
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Corollary Let us suppose that f is diagonalizable. Let λ1, . . . , λp
be the eigenvalues of f with multiplicities m1, . . . ,mp respec-
tively. Let Bi be a basis of the eigenspace Vλi having mi = di
elements, i = 1, . . . , p. Then:

1. B′ = B1 ∪ · · · ∪Bp is a basis of V consisting of eigenvectors
of f .

2. The matrix of f in the basis B′ is diagonal and its main
diagonal contains the elements

λ1, m1. . ., λ1, λ2, m2. . ., λ2, . . . , λp,
mp. . ., λp
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Examples Let f : R3 → R3 be endomorphism defined by

f (x, y, z) = (x + 2y + 10z, 2x + y + 10z,−x− y − 6z)

whose matrix in the standard basis B of R3 is a matrix A whose
eigenvalues are λ1 = −2 and λ2 = −1. A basis of Vλ1 is

Bλ1 = {(−2,−2, 1)}

and of Vλ2 is
Bλ2 = {(−5, 0, 1), (−1, 1, 0)}.

Then a basis of R3 consisting of eigenvectors of f is

B′ = Bλ1 ∪Bλ2 = {(−2,−2, 1), (−5, 0, 1), (−1, 1, 0)}.
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Finally,

D = P−1AP =Mf(B
′) =

 −2 0 0
0 −1 0
0 0 −1


where

P =

 −2 −5 −1−2 0 1
1 1 0

 .


