CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

1. AFFINE SPACE

1.1 Definition of affine space

A real affine space is a triple (\mathbb{A}, V, ϕ) where \mathbb{A} is a set of points, V is a real vector space and $\phi: \mathbb{A} \times \mathbb{A} \longrightarrow V$ is a map verifying:

1. $\forall P \in \mathbb{A}$ and $\forall u \in V$ there exists a unique $Q \in \mathbb{A}$ such that

$$
\phi(P, Q)=u
$$

2. $\phi(P, Q)+\phi(Q, R)=\phi(P, R)$ for every $P, Q, R \in \mathbb{A}$.

Notation. We will write $\phi(P, Q)=\overline{P Q}$. The elements contained on the set \mathbb{A} are called points of \mathbb{A} and we will say that V is the vector space associated to the affine space (\mathbb{A}, V, ϕ). We define the dimension of the affine space (\mathbb{A}, V, ϕ) as

$$
\operatorname{dim} \mathbb{A}=\operatorname{dim} V
$$

Examples

1. Every vector space V is an affine space with associated vector space V. Indeed, in the triple $(\mathbb{A}, V, \phi), \mathbb{A}=V$ and the map ϕ is given by

$$
\phi: \mathbb{A} \times \mathbb{A} \longrightarrow V, \quad \phi(u, v)=v-u .
$$

2. According to the previous example, $\left(\mathbb{R}^{2}, \mathbb{R}^{2}, \phi\right)$ is an affine space of dimension 2, ($\left.\mathbb{R}^{3}, \mathbb{R}^{3}, \phi\right)$ is an affine space of dimension 3. In general $\left(\mathbb{R}^{n}, \mathbb{R}^{n}, \phi\right)$ is an affine space of dimension n.
1.1.1 Properties of affine spaces

Let (\mathbb{A}, V, ϕ) be a real affine space. The following statemens hold:

1. $\phi(P, Q)=0$ if and only if $P=Q$.
2. $\phi(P, Q)=-\phi(Q, P), \forall P, Q \in \mathbb{A}$.
3. $\phi(P, Q)=\phi(R, S)$ if and only if $\phi(P, R)=\phi(Q, S)$.

1.2 Affine coordinate system

Let \mathbb{A} be an affine space of dimension n with associated vector space V.
Definition of affine coordinate system
A set of $n+1$ points $\left\{P_{0} ; P_{1}, \ldots, P_{n}\right\}$ of an affine space $(\mathbb{A}, \mathbb{V}, \phi)$ is an affine coordinate system of \mathbb{A} if the vector set $\left\{\overline{P_{0} P_{1}}, \ldots, \overline{P_{0} P_{n}}\right\}$ in a basis of the vector space V.
A point $P_{0} \in \mathbb{A}$ such that $\left\{\overline{P_{0} P_{1}}, \ldots, \overline{P_{0} P_{n}}\right\}$ is a basis of V, is called origin of the coordinate system $\left\{P_{0} ; P_{1}, \ldots, P_{n}\right\}$.

Proposition

Given a point $P_{0} \in \mathbb{A}$ there exists an affine coordinate system of \mathbb{A} in which P_{0} is the origin.

Corollary
Given a point $O \in \mathbb{A}$ and a basis B of V, we have an affine coordinate system of \mathbb{A}, denoted $\mathcal{R}=\{O ; B\}$.

Definition of coordinates

We call coordinates of a point $P \in \mathbb{A}$ with respect to a cartesian coordinate system $\mathcal{R}=\{O ; B\}$ of the affine space \mathbb{A} to the coordinates of the vector $\overline{O P}$ with respect to the basis B of the vector space V; this is, the n-tuple $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\overline{O P}=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}
$$

where u_{1}, \ldots, u_{n} are the vectors of the basis B.
Example
Let $\mathcal{R}=\left\{O(0,0,0) ; B_{c}\right\}$ be an affine coordinate system of the affine space $\left(\mathbb{R}^{3}, \mathbb{R}^{3}, \phi\right)$ of dimension 3 , where B_{c} is the standard basis of \mathbb{R}^{3}.
Let us consider the coordinate system $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}\right\}$ with $O^{\prime}(1,2,-1)$ and $B^{\prime}=\left\{u_{1}, u_{2}, u_{3}\right\}$. The vectors $u_{1}=(1,0,0), u_{2}=(1,1,0), u_{3}=(1,1,1)$ form a basis of V as we have

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right| \neq 0
$$ so the vector set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is linearly independent (we know that a linearly independent set with 3 vectors in a vector space V of dimension 3 is a basis).

Let P be a point with coordinates $(5,5,0)$ with respect to \mathcal{R}, this is,

$$
P(5,5,0)_{\mathcal{R}} \Longleftrightarrow \overline{O P}=5 u_{1}+5 u_{2}+0 u_{3} .
$$

We are going to calculate the coordinates of P with respect to \mathcal{R}^{\prime} :

$$
\begin{aligned}
\overline{O^{\prime} P} & =(5-1,5-2,0+1)=(4,3,1) \\
\overline{O^{\prime} P} & =x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}=x_{1}(1,0,0)+x_{2}(1,1,0)+x_{3}(1,1,1) \\
& =\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)
\end{aligned}
$$

thus

$$
\left\{\begin{array} { l }
{ 4 = x _ { 1 } + x _ { 2 } + x _ { 3 } } \\
{ 3 = x _ { 2 } + x _ { 3 } } \\
{ 1 = x _ { 3 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}=1 \\
x_{2}=2 \\
x_{3}=1
\end{array}\right.\right.
$$

and so, $(1,2,1)$ are the coordinates of P with respect to $\mathcal{R}^{\prime}: P(1,2,1)_{\mathcal{R}^{\prime}}$.

Change of affine coordinates

We will limit our study to the case of an affine space of dimension 2 .
Let \mathbb{A} be an affine space of dimension 2 with associated vector space V. Let $B=\left\{u_{1}, u_{2}\right\}$ and $B^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$ be two basis of V and $\mathcal{R}=\{O ; B\}$, $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}\right\}$ two affine coordinate systems of \mathbb{A}.

Let us consider $P \in \mathbb{A}$, and let $\left(x_{1}, x_{2}\right)$ be the coordinates of P with respect to \mathcal{R} and ($x_{1}^{\prime}, x_{2}^{\prime}$) the coordinates of P with respect to \mathcal{R}^{\prime}; this is,

$$
\begin{aligned}
O P & =x_{1} u_{1}+x_{2} u_{2}, \\
\text { and } O^{\prime} P & =x_{1}^{\prime} u_{1}^{\prime}+x_{2}^{\prime} u_{2}^{\prime} .
\end{aligned}
$$

What is the relationship between $\left(x_{1}, x_{2}\right)$ and ($x_{1}^{\prime}, x_{2}^{\prime}$)?
We know that

$$
\overline{O P}=\overline{O O^{\prime}}+\overline{O^{\prime} P} .
$$

Let (a, b) be the coordinates of O^{\prime} with respect to \mathcal{R}; this is,

$$
\overline{O O^{\prime}}=a u_{1}+b u_{2},
$$

and let
(a_{11}, a_{21}) be the coordinates of u_{1}^{\prime} with respect to the basis B, $\left(a_{12}, a_{22}\right)$ be the coordinates of u_{2}^{\prime} with respect to the basis B;
this is,

$$
\begin{aligned}
u_{1}^{\prime} & =a_{11} u_{1}+a_{21} u_{2} \\
u_{2}^{\prime} & =a_{12} u_{1}+a_{22} u_{2}
\end{aligned}
$$

If we substitute all this in $\overline{O P}=\overline{O O^{\prime}}+\overline{O^{\prime} P}$ we obtain:

$$
\begin{aligned}
\overline{O P} & =\overline{O O^{\prime}}+\overline{O^{\prime} P} \\
& =a u_{1}+b u_{2}+x_{1}^{\prime} u_{1}^{\prime}+x_{2}^{\prime} u_{2}^{\prime} \\
& =a u_{1}+b u_{2}+x_{1}^{\prime}\left(a_{11} u_{1}+a_{21} u_{2}\right)+x_{2}^{\prime}\left(a_{12} u_{1}+a_{22} u_{2}\right) \\
& =\left(a+x_{1}^{\prime} a_{11}+x_{2}^{\prime} a_{12}\right) u_{1}+\left(b+x_{1}^{\prime} a_{21}+x_{2}^{\prime} a_{22}\right) u_{2}
\end{aligned}
$$

and since $\overline{O P}=x_{1} u_{1}+x_{2} u_{2}$, if we equate the coefficients we have:

$$
\left\{\begin{array}{l}
x_{1}=a+x_{1}^{\prime} a_{11}+x_{2}^{\prime} a_{12} \\
x_{2}=b+x_{1}^{\prime} a_{21}+x_{2}^{\prime} a_{22}
\end{array}\right.
$$

We can also write this equation system as a matrix equation:

$$
\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & a_{11} & a_{12} \\
b & a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right)
$$

Let us consider the general case. Let \mathbb{A} be an n-dimensional affine space, and let $\mathcal{R}=\left\{O ; B=\left\{u_{1}, \ldots, u_{n}\right\}\right\}$ and $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{2}^{\prime}\right\}\right\}$ be two affine coordinate systems of \mathbb{A}.

Let $\left(x_{1}, \ldots, x_{n}\right)$ be the coordinates of P with respect to \mathcal{R} and $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ the coordinates of P with respect to \mathcal{R}^{\prime} then we have:

$$
\left(\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
a_{1} & a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)
$$

where
$\left(a_{1}, \ldots, a_{n}\right)$ are the coordinates of O^{\prime} with respect to \mathcal{R}, $\left(a_{11}, \ldots, a_{n 1}\right)$ are the coordinates of u_{1}^{\prime} with respect to the basis B,
$\left(a_{1 n}, \ldots, a_{n n}\right)$ are the coordinates of u_{1}^{\prime} with respect to the basis B.

We can also write it as follows:

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)+A\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right)
$$

where A is the matrix of change of basis from B^{\prime} to B :

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

The matrix

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
a_{1} & a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

is the change of coordinates matrix from \mathcal{R}^{\prime} to \mathcal{R}.

Example

In the affine space $\left(\mathbb{A}_{2}, V_{2}, \phi\right)$ we consider the coordinate systems $\mathcal{R}=$ $\left\{O ; B=\left\{u_{1}, u_{2}\right\}\right\}, \mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right\}$ with

$$
\overline{O O^{\prime}}=3 u_{1}+3 u_{2}, \quad u_{1}^{\prime}=2 u_{1}-u_{2}, \quad u_{2}^{\prime}=-u_{1}+2 u_{2} .
$$

1. Determine the change of coordinates matrix from \mathcal{R}^{\prime} to \mathcal{R}.

We have

$$
\begin{aligned}
\overline{O P} & =\overline{O O^{\prime}}+\overline{O^{\prime} P}=3 u_{1}+3 u_{2}+y_{1}\left(2 u_{1}-u_{2}\right)+y_{2}\left(-u_{1}+2 u_{2}\right) \\
& =\left(3+2 y_{1}-y_{2}\right) u_{1}+\left(3-y_{1}+2 y_{2}\right) u_{2}
\end{aligned}
$$

so

$$
\left\{\begin{array}{l}
x_{1}=3+2 y_{1}-y_{2} \\
x_{2}=3-y_{1}+2 y_{2}
\end{array}\right.
$$

this is,

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 2 & -1 \\
3 & -1 & 2
\end{array}\right)
$$

2. Determine the change of coordinates matrix from \mathcal{R} to \mathcal{R}^{\prime}.

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 2 & -1 \\
3 & -1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & \frac{2}{3} & \frac{1}{3} \\
-3 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

3. The coordinates of a point P with respect to the coordinate system \mathcal{R} are $(3,5)$. Determine the coordinates of P in \mathcal{R}^{\prime}.

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & \frac{2}{3} & \frac{1}{3} \\
-3 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{c}
1 \\
3 \\
5
\end{array}\right)=\left(\begin{array}{c}
1 \\
\frac{2}{3} \\
\frac{4}{3}
\end{array}\right)
$$

4. The coordinates of a point Q with respect to the coordinate system \mathcal{R}^{\prime} are $(2,3)$. Determine the coordinates of Q in \mathcal{R}.

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 2 & -1 \\
3 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right) .
$$

1.3 Affine subspace

Definition of affine subspace

Let (\mathbb{A}, V, ϕ) be a real affine space. A subset $L \subset \mathbb{A}$ is an affine subspace of \mathbb{A} if given a point $P \in L$ the set

$$
W(L)=\{\overline{P Q} \mid Q \in L\}
$$

is a vector subspace of V.
If $L \subset \mathbb{A}$ is an affine subspace, the vector subspace $W(L)$ that verifies the previous definition is called vector subspace associated to L and it is denoted by \bar{L}.

Proposition
The former definition does not depend on the fixed point P.
Proposition
Let (\mathbb{A}, V, ϕ) be a real affine space and L an affine subspace of \mathbb{A}. The triple (L, \bar{L}, ϕ) is an affine space.

Proposition

Let (\mathbb{A}, V, ϕ) be a real affine space and L an affine subspace of \mathbb{A}. For every point $P \in \mathbb{A}$ and each vector subspace $W \subset V$ the set

$$
S(P, W)=\{X \in \mathbb{A} \mid \overline{P X} \in W\}
$$

is an affine subspace of \mathbb{A} that we denote by $P+W$.
Definition of dimension of an affine subspace
Let (\mathbb{A}, V, ϕ) be a real affine space and L an affine subspace of \mathbb{A}. The dimension of L is defined as the dimension of its associated vector subspace: $\operatorname{dim} L=\operatorname{dim} \bar{L}$.

Notation Let (\mathbb{A}, V, ϕ) be a real affine space of dimension n. The subspaces of dimension 0 are the points of \mathbb{A}. The subspaces of dimension 1,2 and $n-1$ are called lines, planes and hyperplanes, respectively.
1.3.1. Equations of an affine subspace

Let (\mathbb{A}, V, ϕ) be an affine subspace with affine coordinate system $\mathcal{R}=$ $\{O ; B\}, B=\left\{e_{1}, \ldots, e_{n}\right\}$. Let $L \subset \mathbb{A}$ be an affine subspace of \mathbb{A} of dimension k; this is, $L=P+\bar{L}$ with $\bar{L}=\left\langle u_{1}, \ldots, u_{k}\right\rangle$.

Suppose $\left(a_{1}, \ldots, a_{n}\right)$ are the coordinates of a point P in the coordinate system \mathcal{R} and

$$
\left\{\begin{array}{c}
u_{1}=a_{11} e_{1}+\cdots+a_{n 1} e_{n} \\
u_{2}=a_{12} e_{1}+\cdots+a_{n 2} e_{n} \\
\vdots \\
u_{k}=a_{1 k} e_{1}+\cdots+a_{n k} e_{n}
\end{array}\right.
$$

Parametric equations

A point $X\left(x_{1}, \ldots, x_{n}\right)_{\mathcal{R}} \in L$ if and only if there exist $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that

$$
\overline{O X}=\overline{O P}+\lambda_{1} u_{1}+\cdots+\lambda_{k} u_{k} ;
$$

this is,

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)+\lambda_{1}\left(a_{11}, \ldots, a_{n 1}\right)+\cdots+\lambda_{k}\left(a_{1 k}, \ldots, a_{n k}\right)
$$

or, equivalently

$$
\left\{\begin{array}{c}
x_{1}=a_{1}+\lambda_{1} a_{11}+\cdots+\lambda_{k} a_{1 k} \\
\vdots \\
x_{n}=a_{n}+\lambda_{1} a_{n 1}+\cdots+\lambda_{k} a_{n k}
\end{array}\right.
$$

which are the parametric equations of the subspace L.

Cartesian equations

A point $X\left(x_{1}, \ldots, x_{n}\right)_{\mathcal{R}} \in L$ if and only if the vector

$$
\overline{P X}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \in\left\langle u_{1}, \ldots, u_{k}\right\rangle
$$

As we are assuming that the vectors u_{1}, \ldots, u_{k} are linearly independent (if they were not, we would remove those which were a linear combination of the rest) we have

$$
\operatorname{rank}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n k}
\end{array}\right)=k
$$

Therefore, $\overline{P X}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \in\left\langle u_{1}, \ldots, u_{k}\right\rangle$ if and only if

$$
\operatorname{rank}\left(\begin{array}{cccc}
x_{1}-a_{1} & a_{11} & \cdots & a_{1 k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}-a_{n} & a_{n 1} & \cdots & a_{n k}
\end{array}\right)=k
$$

As we are imposing the rank to be k we obtain $n-k$ minors of order $k+1$. This is, we obtain $n-k$ equations with n unknowns: $\left(x_{1}, \ldots, x_{n}\right)$.

Observation Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B\}, B=\left\{e_{1}, \ldots, e_{n}\right\}$. Let

$$
L \equiv\left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{n 1} x_{n}=b_{1} \\
\vdots \\
a_{1 r} x_{1}+\cdots+a_{n r} x_{n}=b_{r}
\end{array}\right.
$$

be the cartesian equations of an affine subspace L of dimension $n-r$.
Notice that the cartesian equations of an affine subspace L of dimension $n-r$ are a system of r non homogeneous linear equations. If $P, Q \in L$ then the vector $u=\overline{P Q}$ satisfies the equations of the homogeneous linear system associated with \bar{L}.

Proof If $P\left(p_{1}, \ldots, p_{n}\right)$ and $Q\left(q_{1}, \ldots, q_{n}\right)$ then

$$
u=\overline{P Q}=\left(q_{1}-p_{1}, \ldots, q_{n}-p_{n}\right)
$$

and for $i=1 \ldots r$, we have

$$
\begin{aligned}
& a_{1 i}\left(p_{1}-q_{1}\right)+\cdots+a_{n i}\left(p_{1}-q_{1}\right) \\
= & a_{1 i} p_{1}+\cdots+a_{n i} p_{n}-\left(a_{1 i} q_{1}+\cdots+a_{n i} q_{n}\right) \underset{P, \overline{Q \in L}}{\overline{=}} b_{i}-b_{i} \\
= & 0 .
\end{aligned}
$$

So, the system of cartesian equations of the vector space associated with L are:

$$
\bar{L} \equiv\left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{n 1} x_{n}=0 \\
\vdots \\
a_{1 r} x_{1}+\cdots+a_{n r} x_{n}=0
\end{array}\right.
$$

Equations of a line

Let (\mathbb{A}, V, ϕ) be affine space with an affine coordinate system $\mathcal{R}=\{O ; B\}$, $B=\left\{e_{1}, \ldots, e_{n}\right\}$. A affine line $r \subset \mathbb{A}$ is an affine subspace of dimension 1 ; this is, $r=P+\langle u\rangle$. Let us suppose that $\left(a_{1}, \ldots, a_{n}\right)$ are the coordinates of a point P in the coordinate system \mathcal{R} and

$$
u=u_{1} e_{1}+\cdots+u_{n} e_{n}
$$

So, a point $X \in r$ if and only if

$$
\overline{O X}=\overline{O P}+\lambda u
$$

this is, if $\left(x_{1}, \ldots, x_{n}\right)$ are the coordinates of X in the coordinate system \mathcal{R} then,

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)+\lambda\left(u_{1}, \ldots, u_{n}\right)
$$

or, equivalently the parametric equations of the line r.

$$
\left\{\begin{array}{c}
x_{1}=a_{1}+\lambda_{1} u_{1} \\
\vdots \\
x_{n}=a_{n}+\lambda_{1} u_{n}
\end{array}\right.
$$

If we suppose $u_{1} \neq 0$ (some u_{i} is non zero since the vector u is not null), the former system is written as follows:

$$
\frac{x_{1}-a_{1}}{u_{1}}=\cdots=\frac{x_{n}-a_{n}}{u_{n}}
$$

which is the continous equation of the line r.
To finish, $X\left(x_{1}, \ldots, x_{n}\right)_{\mathcal{R}} \in L$ if and only if $\overline{X P} \in\langle u\rangle$ if and only if $\overline{X P}$ and u are proportional. Therefore, $\overline{X P} \in\langle u\rangle$ if and only if

$$
\operatorname{rank}\left(\begin{array}{cc}
x_{1}-a_{1} & u_{1} \\
\vdots & \vdots \\
x_{n}-a_{n} & u_{n}
\end{array}\right)=1
$$

As we are imposing the rank to be 1 we obtain $n-1$ minors of order 2 . This is, we obtain $n-1$ cartesian equations of r.

Equations of a hyperplane

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B\}$, $B=\left\{e_{1}, \ldots, e_{n}\right\}$. An affine hyperplane $H \subset \mathbb{A}$ in an affine subspace of dimension $n-1$; it is therefore given by just one equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

Observation An affine subspace L of dimension k is the intersection of $n-k$ independent hyperplanes.

Example 1 Obtain the parametric equations of the affine subspace L of \mathbb{A} which has the following cartesian equations with respect to \mathcal{R} :

$$
L \equiv\left\{\begin{array}{l}
x_{1}+x_{2}+2 x_{3}=1 \\
2 x_{2}-x_{3}=1
\end{array}\right.
$$

First method.
We solve the non homogeneous linear system of equations defining L. The coefficient matrix of the system is:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 2 & -1
\end{array}\right)
$$

whose rank is 2. As

$$
\operatorname{rank}\left(\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right)=2
$$

if we take $x_{3}=\lambda$ the system can be written as follows:

$$
\left\{\begin{array} { l }
{ x _ { 1 } + x _ { 2 } + 2 x _ { 3 } = 1 } \\
{ 2 x _ { 2 } - x _ { 3 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}+x_{2}=1-2 \lambda \\
2 x_{2}=1+\lambda \\
x_{3}=\lambda
\end{array}\right.\right.
$$

This is,

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{2}-\frac{5}{2} \lambda \\
x_{2}=\frac{1}{2}+\frac{1}{2} \lambda \\
x_{3}=\lambda
\end{array}\right.
$$

which are the parametric equations of L.

Second method.

As $\operatorname{dim} L=3-\operatorname{rank}(A)=3-2=1, L$ is a line, to determine L it is enough to give a point $P \in L$ and a vector v that generates the vector subspace $\bar{L}=\langle v\rangle$. A point $P \in L$ must satisfy the system of equations defined by L; for example take $P(3,0,-1)$.
A vector that generates the vector subspace \bar{L} is a nontrivial solution of the homogeneous linear system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+2 x_{3}=0 \\
2 x_{2}-x_{3}=0
\end{array}\right.
$$

For example the vector $u=(-5,1,2)$.
Therefore, $L=P+\bar{L}=P+\langle u\rangle$. So, $X\left(x_{1}, x_{2}, x_{3}\right) \in L$ if and only if $\left(x_{1}, x_{2}, x_{3}\right)=(3,0,-1)+\lambda(-5,1,2)$; this is,

$$
\left\{\begin{array}{l}
x_{1}=3-5 \lambda \\
x_{2}=\lambda \\
x_{3}=-1+2 \lambda
\end{array}\right.
$$

which are the parametric equations of L.

Example 2

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B\}$, $B=\left\{e_{1}, e_{2}, e_{3}\right\}$. Obtain the cartesian equations of the affine subspace $L=$ $P+\bar{L}$, where $P(1,2,-1)_{\mathcal{R}}$ and $\bar{L}=\left\langle u_{1}, u_{2}\right\rangle$ with $u_{1}=(1,2,-1)$ and $u_{2}=$ $(2,1,1)$.

Solution.

The vectors u_{1}, u_{2} which generate \bar{L} are linearly independent. Therefore, $\operatorname{dim} L=2$.
A point $X\left(x_{1}, x_{2}, x_{3}\right)_{\mathcal{R}} \in L$ if and only if the vector

$$
\overline{P X}=\left(x_{1}-1, x_{2}-2, x_{3}+1\right) \in\left\langle u_{1}, u_{2}\right\rangle ;
$$

this is, if and only if

$$
\operatorname{rank}\left(\begin{array}{ccc}
x_{1}-1 & 1 & 2 \\
x_{2}-2 & 2 & 1 \\
x_{3}+1 & -1 & 1
\end{array}\right)=2 \Longleftrightarrow 0=\left|\begin{array}{ccc}
x_{1}-1 & 1 & 2 \\
x_{2}-2 & 2 & 1 \\
x_{3}+1 & -1 & 1
\end{array}\right|=3 x_{1}-3 x_{2}-3 x_{3}
$$

Therefore $L \equiv x_{1}-x_{2}-x_{3}=0$.
1.3.2 Intersection and sum of affine subspaces

Let (\mathbb{A}, V, ϕ) be a real affine space and L_{1}, L_{2} two affine subspaces of \mathbb{A}. The intersection set of L_{1} and L_{2} :

$$
L_{1} \cap L_{2}=\left\{P \mid P \in L_{1} \text { y } P \in L_{2}\right\}
$$

is an affine subspace of \mathbb{A}. If the intersection is not empty, $L_{1} \cap L_{2} \neq \emptyset$, then

$$
\overline{L_{1} \cap L_{2}}=\bar{L}_{1} \cap \bar{L}_{2} .
$$

We define the sum of L_{1} and L_{2} as the smallest affine subspace that contains L_{1} and L_{2} and it is denotated by $L_{1}+L_{2}$. If $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ then

$$
L_{1}+L_{2}=P_{1}+\bar{L}_{1}+\bar{L}_{2}+\left\langle\overline{P_{1} P_{2}}\right\rangle .
$$

Observation If $L_{1} \cap L_{2} \neq \emptyset$ then

$$
\overline{L_{1}+L_{2}}=\bar{L}_{1}+\bar{L}_{2}+\left\langle\overline{P_{1} P_{2}}\right\rangle=\bar{L}_{1}+\bar{L}_{2}
$$

If $L_{1} \cap L_{2}=\emptyset$ then

$$
\overline{L_{1}+L_{2}}=\bar{L}_{1}+\bar{L}_{2}+\left\langle\overline{P_{1} P_{2}}\right\rangle, P_{1} \in L_{1}, P_{2} \in L_{2} .
$$

Two linear subspaces $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ intersect if and only if

$$
\overline{P_{1} P_{2}} \in \bar{L}_{1}+\bar{L}_{2} .
$$

1.3.3 Parallelism

We say that two affine subspaces $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ of an affine space (\mathbb{A}, V, ϕ) are parallel if $\bar{L}_{1} \subset \bar{L}_{2}$ or $\bar{L}_{2} \subset \bar{L}_{1}$. Two affine subspaces $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ may not intersect and they may not be parallel either, then they are skew lines.

1.3.4 Dimension Formula

Let $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ be two affine subspaces of an affine space (\mathbb{A}, V, ϕ). The following statements hold:

1. If $L_{1} \cap L_{2} \neq \emptyset$, then

$$
\operatorname{dim}\left(L_{1}+L_{2}\right)=\operatorname{dim} L_{1}+\operatorname{dim} L_{2}-\operatorname{dim}\left(L_{1} \cap L_{2}\right)
$$

2. If $L_{1} \cap L_{2}=\emptyset$, then

$$
\operatorname{dim}\left(L_{1}+L_{2}\right)=\operatorname{dim} L_{1}+\operatorname{dim} L_{2}-\operatorname{dim}\left(\bar{L}_{1} \cap \bar{L}_{2}\right)+1
$$

Example

Let $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ be two affine lines in an affine space (\mathbb{A}, V, ϕ) of dimension n. The possible relative positions of L_{1} and L_{2} are:
If $L_{1} \cap L_{2} \neq \emptyset$ then either $L_{1} \cap L_{2}$ is a line and then $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=1$ or $L_{1} \cap L_{2}$ is a point and therefore $\operatorname{dim}\left(L_{1} \cap L_{2}\right)=0$. We have:

$$
\operatorname{dim}\left(L_{1}+L_{2}\right)=\operatorname{dim} L_{1}+\operatorname{dim} L_{2}-\operatorname{dim}\left(L_{1} \cap L_{2}\right)
$$

L_{1} and L_{2} are coincident
L_{1} and L_{2} intersect in on point $\Longrightarrow\left\{\begin{array}{l}1=1+1-1 \\ 2=1+1-0\end{array}\right.$
If $L_{1} \cap L_{2}=\emptyset$ then $\bar{L}_{1} \cap \bar{L}_{2}$ can either be a vector line or the null vector $\overline{0}$. We have:

$$
\operatorname{dim}\left(L_{1}+L_{2}\right)=\operatorname{dim} L_{1}+\operatorname{dim} L_{2}-\operatorname{dim}\left(\bar{L}_{1} \cap \bar{L}_{2}\right)+1
$$

L_{1} and L_{2} are parallel
L_{1} and L_{2} are skew lines $\Longrightarrow\left\{\begin{array}{l}2=1+1-1+1 \\ 3=1+1-0+1\end{array}\right.$

Definition

let $L_{1}=P_{1}+\left\langle u_{1}\right\rangle$ and $L_{2}=P_{2}+\left\langle u_{2}\right\rangle$ be two affine lines in an affine space (\mathbb{A}, V, ϕ) of dimension n. The following statements hold:

1. The lines L_{1} and L_{2} are skew lines if there does not exist a plane containing both lines; this is, if the vector system $\left\{u_{1}, u_{2}, \overline{P_{1} P_{2}}\right\}$ is linearly independent.
2. The lines L_{1} and L_{2} are in the same plane if they are not skew lines; this is, if the vector system $\left\{u_{1}, u_{2}, \overline{P_{1} P_{2}}\right\}$ is linearly dependent.
3. The lines L_{1} and L_{2} intersect if $L_{1} \cap L_{2} \neq \emptyset$.
4. The lines L_{1} and L_{2} are parallel if $\overline{L_{1}}=\overline{L_{2}}$; this is, if u_{1} and u_{2} are proportional. If besides $L_{1} \cap L_{2} \neq \emptyset$ then the two lines are coincident.

To study the systems of equations of two subspaces is a simple way of studying the relative position between those subspaces. We are going to study two particularly simple cases:
I. Relative position of two hyperplanes

Let $H_{1}, H_{2} \subset \mathbb{A}$ be two hyperplanes with cartesian equations

$$
\begin{aligned}
H_{1} & \equiv a_{1} x_{1}+\cdots+a_{n} x_{n}=b, \\
H_{2} & \equiv a_{1}^{\prime} x_{1}+\cdots+a_{n}^{\prime} x_{n}=b^{\prime} .
\end{aligned}
$$

The cartesian equations of their respective vector spaces are

$$
\begin{aligned}
& \bar{H}_{1} \equiv a_{1} x_{1}+\cdots+a_{n} x_{n}=0, \\
& \bar{H}_{2} \equiv a_{1}^{\prime} x_{1}+\cdots+a_{n}^{\prime} x_{n}=0 .
\end{aligned}
$$

Therefore, if there exists λ such that $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\lambda\left(a_{1}, \ldots, a_{n}\right)$ then $\bar{H}_{1}=$ \bar{H}_{2} and the hyperplanes H_{1}, H_{2} are parallel.

If besides, $b^{\prime}=\lambda b$ the the hyperplanes H_{1}, H_{2} are coincident.
If $b^{\prime} \neq \lambda b$ then the hyperplanes H_{1}, H_{2} do not intersect $\left(H_{1} \cap H_{2}=\emptyset\right)$.
II. Relative position between a line and a hyperplane

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B\}$, $B=\left\{e_{1}, \ldots, e_{n}\right\}$. Let $r=P+\langle u\rangle$ be an affine line in \mathbb{A} with $P\left(a_{1}, \ldots, a_{n}\right)_{\mathcal{R}}$ and $u=\left(u_{1}, \ldots, u_{n}\right)$. Let H be an affine hyperplane with cartesian equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

The line r and the hyperplane H are parallel if the vector $u \in \bar{H}$; this is, if $\left(u_{1}, \ldots, u_{n}\right)$ satisfies the homogeneous linear equation of the vector subspace \bar{H}; this is, if

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}=0
$$

