AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

1. AFFINE SPACE

1.1 Definition of affine space

A *real affine space* is a triple (\mathbb{A}, V, ϕ) where \mathbb{A} is a set of points, V is a real vector space and $\phi \colon \mathbb{A} \times \mathbb{A} \longrightarrow V$ is a map verifying:

1. $\forall P \in \mathbb{A}$ and $\forall u \in V$ there exists a unique $Q \in \mathbb{A}$ such that

 $\phi(P,Q) = u.$

2. $\phi(P,Q) + \phi(Q,R) = \phi(P,R)$ for every $P,Q,R \in \mathbb{A}$.

Notation. We will write $\phi(P,Q) = \overline{PQ}$. The elements contained on the set A are called *points* of A and we will say that *V* is the vector space associated to the affine space (\mathbb{A}, V, ϕ) . We define the *dimension of the affine space* (\mathbb{A}, V, ϕ) as

$$\dim \mathbb{A} = \dim V.$$

Examples

1. Every vector space V is an affine space with associated vector space V. Indeed, in the triple (\mathbb{A}, V, ϕ) , $\mathbb{A} = V$ and the map ϕ is given by

$$\phi \colon \mathbb{A} \times \mathbb{A} \longrightarrow V, \ \phi(u,v) = v - u.$$

2. According to the previous example, $(\mathbb{R}^2, \mathbb{R}^2, \phi)$ is an affine space of dimension 2, $(\mathbb{R}^3, \mathbb{R}^3, \phi)$ is an affine space of dimension 3. In general $(\mathbb{R}^n, \mathbb{R}^n, \phi)$ is an affine space of dimension *n*.

1.1.1 Properties of affine spaces

Let (\mathbb{A}, V, ϕ) be a real affine space. The following statemens hold:

1.
$$\phi(P,Q) = 0$$
 if and only if $P = Q$.

- **2.** $\phi(P,Q) = -\phi(Q,P)$, $\forall P,Q \in \mathbb{A}$.
- 3. $\phi(P,Q) = \phi(R,S)$ if and only if $\phi(P,R) = \phi(Q,S)$.

1.2 Affine coordinate system

Let \mathbb{A} be an affine space of dimension n with associated vector space V.

Definition of affine coordinate system

A set of n + 1 points $\{P_0; P_1, \ldots, P_n\}$ of an affine space $(\mathbb{A}, \mathbb{V}, \phi)$ is an affine coordinate system of \mathbb{A} if the vector set $\{\overline{P_0P_1}, \ldots, \overline{P_0P_n}\}$ in a basis of the vector space V.

A point $P_0 \in \mathbb{A}$ such that $\{\overline{P_0P_1}, \dots, \overline{P_0P_n}\}$ is a basis of V, is called *origin* of the coordinate system $\{P_0; P_1, \dots, P_n\}$.

Proposition

Given a point $P_0 \in \mathbb{A}$ there exists an affine coordinate system of \mathbb{A} in which P_0 is the origin.

Corollary

Given a point $O \in A$ and a basis B of V, we have an affine coordinate system of A, denoted $\mathcal{R} = \{O; B\}$.

Definition of coordinates

We call *coordinates* of a point $P \in \mathbb{A}$ with respect to a cartesian coordinate system $\mathcal{R} = \{O; B\}$ of the affine space \mathbb{A} to the coordinates of the vector \overline{OP} with respect to the basis B of the vector space V; this is, the *n*-tuple $(\alpha_1, \ldots, \alpha_n)$ such that

$$\overline{OP} = \alpha_1 u_1 + \dots + \alpha_n u_n$$

where u_1, \ldots, u_n are the vectors of the basis *B*.

Example

Let $\mathcal{R} = \{O(0, 0, 0); B_c\}$ be an affine coordinate system of the affine space $(\mathbb{R}^3, \mathbb{R}^3, \phi)$ of dimension 3, where B_c is the standard basis of \mathbb{R}^3 .

Let us consider the coordinate system $\mathcal{R}' = \{O'; B'\}$ with O'(1, 2, -1) and $B' = \{u_1, u_2, u_3\}$. The vectors $u_1 = (1, 0, 0)$, $u_2 = (1, 1, 0)$, $u_3 = (1, 1, 1)$ form a basis of V as we have

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} \neq 0$$

so the vector set $\{u_1, u_2, u_3\}$ is linearly independent (we know that a linearly independent set with 3 vectors in a vector space V of dimension 3 is a basis).

Let *P* be a point with coordinates (5, 5, 0) with respect to \mathcal{R} , this is,

$$P(5,5,0)_{\mathcal{R}} \longleftrightarrow \overline{OP} = 5u_1 + 5u_2 + 0u_3.$$

We are going to calculate the coordinates of P with respect to \mathcal{R}' :

$$\overline{O'P} = (5-1, 5-2, 0+1) = (4, 3, 1),$$

$$\overline{O'P} = x_1u_1 + x_2u_2 + x_3u_3 = x_1(1, 0, 0) + x_2(1, 1, 0) + x_3(1, 1, 1)$$

$$= (x_1 + x_2 + x_3, x_2 + x_3, x_3),$$

thus

$$\begin{cases} 4 = x_1 + x_2 + x_3 \\ 3 = x_2 + x_3 \\ 1 = x_3 \end{cases} \implies \begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 1 \end{cases}$$

and so, (1, 2, 1) are the coordinates of P with respect to \mathcal{R}' : $P(1, 2, 1)_{\mathcal{R}'}$.

Change of affine coordinates

We will limit our study to the case of an affine space of dimension 2.

Let \mathbb{A} be an affine space of dimension 2 with associated vector space V. Let $B = \{u_1, u_2\}$ and $B' = \{u'_1, u'_2\}$ be two basis of V and $\mathcal{R} = \{O; B\}$, $\mathcal{R}' = \{O'; B'\}$ two affine coordinate systems of \mathbb{A} .

Let us consider $P \in \mathbb{A}$, and let (x_1, x_2) be the coordinates of P with respect to \mathcal{R} and (x'_1, x'_2) the coordinates of P with respect to \mathcal{R}' ; this is,

 $OP = x_1u_1 + x_2u_2,$ and $O'P = x'_1u'_1 + x'_2u'_2.$

What is the relationship between (x_1, x_2) and (x'_1, x'_2) ?

We know that

$$\overline{OP} = \overline{OO'} + \overline{O'P}.$$

Let (a, b) be the coordinates of O' with respect to \mathcal{R} ; this is,

 $\overline{OO'} = au_1 + bu_2,$

and let

 (a_{11}, a_{21}) be the coordinates of u'_1 with respect to the basis B, (a_{12}, a_{22}) be the coordinates of u'_2 with respect to the basis B;

this is,

$$u_1' = a_{11}u_1 + a_{21}u_2, u_2' = a_{12}u_1 + a_{22}u_2.$$

If we substitute all this in $\overline{OP} = \overline{OO'} + \overline{O'P}$ we obtain:

$$\overline{OP} = \overline{OO'} + \overline{O'P}
= au_1 + bu_2 + x'_1u'_1 + x'_2u'_2
= au_1 + bu_2 + x'_1(a_{11}u_1 + a_{21}u_2) + x'_2(a_{12}u_1 + a_{22}u_2)
= (a + x'_1a_{11} + x'_2a_{12})u_1 + (b + x'_1a_{21} + x'_2a_{22})u_2,$$

and since $\overline{OP} = x_1u_1 + x_2u_2$, if we equate the coefficients we have:

$$\begin{cases} x_1 = a + x_1'a_{11} + x_2'a_{12} \\ x_2 = b + x_1'a_{21} + x_2'a_{22} \end{cases}$$

We can also write this equation system as a matrix equation:

$$\begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ a & a_{11} & a_{12} \\ b & a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ x'_1 \\ x'_2 \end{pmatrix}$$

Let us consider the general case. Let \mathbb{A} be an *n*-dimensional affine space, and let $\mathcal{R} = \{O; B = \{u_1, \ldots, u_n\}\}$ and $\mathcal{R}' = \{O'; B' = \{u'_1, \ldots, u'_2\}\}$ be two affine coordinate systems of \mathbb{A} .

Let (x_1, \ldots, x_n) be the coordinates of *P* with respect to \mathcal{R} and (x'_1, \ldots, x'_n) the coordinates of *P* with respect to \mathcal{R}' then we have:

$$\begin{pmatrix} 1\\x_1\\\vdots\\x_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0\\a_1 & a_{11} & \cdots & a_{1n}\\\vdots & \vdots & \ddots & \vdots\\a_n & a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 1\\x'_1\\\vdots\\x'_n \end{pmatrix}$$

where

 (a_1, \ldots, a_n) are the coordinates of O' with respect to \mathcal{R} , (a_{11}, \ldots, a_{n1}) are the coordinates of u'_1 with respect to the basis B, \vdots (a_{1n}, \ldots, a_{nn}) are the coordinates of u'_1 with respect to the basis B. We can also write it as follows:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + A \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

where A is the matrix of change of basis from B' to B:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}.$$

The matrix

$$M_f(\mathcal{R}', \mathcal{R}) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_1 & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

is the *change of coordinates matrix* from \mathcal{R}' to \mathcal{R} .

Example

In the affine space $(\mathbb{A}_2, V_2, \phi)$ we consider the coordinate systems $\mathcal{R} = \{O; B = \{u_1, u_2\}\}, \mathcal{R}' = \{O'; B' = \{u'_1, u'_2\}\}$ with

$$\overline{OO'} = 3u_1 + 3u_2, \quad u'_1 = 2u_1 - u_2, \quad u'_2 = -u_1 + 2u_2.$$

1. Determine the change of coordinates matrix from \mathcal{R}' to $\mathcal{R}.$ We have

$$\overline{OP} = \overline{OO'} + \overline{O'P} = 3u_1 + 3u_2 + y_1(2u_1 - u_2) + y_2(-u_1 + 2u_2)$$

= $(3 + 2y_1 - y_2)u_1 + (3 - y_1 + 2y_2)u_2,$

SO

$$\begin{cases} x_1 = 3 + 2y_1 - y_2 \\ x_2 = 3 - y_1 + 2y_2 \end{cases}$$

this is,

$$M_f(\mathcal{R}', \mathcal{R}) = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & -1 \\ 3 & -1 & 2 \end{pmatrix}$$

2. Determine the change of coordinates matrix from \mathcal{R} to \mathcal{R}' .

$$M_f(\mathcal{R}, \mathcal{R}') = M_f(\mathcal{R}', \mathcal{R})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & -1 \\ 3 & -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & \frac{2}{3} & \frac{1}{3} \\ -3 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

3. The coordinates of a point P with respect to the coordinate system \mathcal{R} are (3, 5). Determine the coordinates of P in \mathcal{R}' .

$$M_f(\mathcal{R}, \mathcal{R}') \begin{pmatrix} 1\\ 3\\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ -3 & \frac{2}{3} & \frac{1}{3}\\ -3 & \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1\\ 3\\ 5 \end{pmatrix} = \begin{pmatrix} 1\\ \frac{2}{3}\\ \frac{4}{3} \end{pmatrix}$$

4. The coordinates of a point Q with respect to the coordinate system \mathcal{R}' are (2,3). Determine the coordinates of Q in \mathcal{R} .

$$M_f(\mathcal{R}',\mathcal{R})\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}1&0&0\\3&2&-1\\3&-1&2\end{pmatrix}\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}1\\4\\7\end{pmatrix}.$$

1.3 Affine subspace

Definition of affine subspace

Let (\mathbb{A}, V, ϕ) be a real affine space. A subset $L \subset \mathbb{A}$ is an *affine subspace* of \mathbb{A} if given a point $P \in L$ the set

$$W(L) = \{ \overline{PQ} \mid Q \in L \}$$

is a vector subspace of V.

If $L \subset A$ is an affine subspace, the vector subspace W(L) that verifies the previous definition is called *vector subspace associated to* L and it is denoted by \overline{L} .

Proposition

The former definition does not depend on the fixed point *P*.

Proposition

Let (\mathbb{A}, V, ϕ) be a real affine space and *L* an affine subspace of \mathbb{A} . The triple (L, \overline{L}, ϕ) is an affine space.

Proposition

Let (\mathbb{A}, V, ϕ) be a real affine space and L an affine subspace of \mathbb{A} . For every point $P \in \mathbb{A}$ and each vector subspace $W \subset V$ the set

 $S(P,W) = \{X \in \mathbb{A} \mid \overline{PX} \in W\}$

is an affine subspace of \mathbb{A} that we denote by P + W.

Definition of dimension of an affine subspace

Let (\mathbb{A}, V, ϕ) be a real affine space and L an affine subspace of \mathbb{A} . The *dimension* of L is defined as the dimension of its associated vector subspace: dim $L = \dim \overline{L}$.

Notation Let (\mathbb{A}, V, ϕ) be a real affine space of dimension n. The subspaces of dimension 0 are the points of \mathbb{A} . The subspaces of dimension 1, 2 and n-1 are called *lines, planes and hyperplanes,* respectively.

1.3.1. Equations of an affine subspace

Let (\mathbb{A}, V, ϕ) be an affine subspace with affine coordinate system $\mathcal{R} = \{O; B\}$, $B = \{e_1, \ldots, e_n\}$. Let $L \subset \mathbb{A}$ be an affine subspace of \mathbb{A} of dimension k; this is, $L = P + \overline{L}$ with $\overline{L} = \langle u_1, \ldots, u_k \rangle$.

Suppose (a_1, \ldots, a_n) are the coordinates of a point *P* in the coordinate system \mathcal{R} and

$$u_{1} = a_{11}e_{1} + \dots + a_{n1}e_{n}$$
$$u_{2} = a_{12}e_{1} + \dots + a_{n2}e_{n}$$
$$\vdots$$
$$u_{k} = a_{1k}e_{1} + \dots + a_{nk}e_{n}$$

Parametric equations

A point $X(x_1, ..., x_n)_{\mathcal{R}} \in L$ if and only if there exist $\lambda_1, ..., \lambda_k \in \mathbb{R}$ such that $\overline{OX} = \overline{OP} + \lambda_1 u_1 + \dots + \lambda_k u_k;$

this is,

$$(x_1, \dots, x_n) = (a_1, \dots, a_n) + \lambda_1(a_{11}, \dots, a_{n1}) + \dots + \lambda_k(a_{1k}, \dots, a_{nk})$$

or, equivalently

$$\begin{cases} x_1 = a_1 + \lambda_1 a_{11} + \dots + \lambda_k a_{1k} \\ \vdots \\ x_n = a_n + \lambda_1 a_{n1} + \dots + \lambda_k a_{nk} \end{cases}$$

which are the *parametric equations* of the subspace L.

Cartesian equations

A point $X(x_1, \ldots, x_n)_{\mathcal{R}} \in L$ if and only if the vector

$$\overline{PX} = (x_1 - a_1, \dots, x_n - a_n) \in \langle u_1, \dots, u_k \rangle.$$

As we are assuming that the vectors u_1, \ldots, u_k are linearly independent (if they were not, we would remove those which were a linear combination of the rest) we have

$$\operatorname{rank}\left(\begin{array}{ccc}a_{11}&\cdots&a_{1k}\\ \vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nk}\end{array}\right)=k.$$

Therefore, $\overline{PX} = (x_1 - a_1, \dots, x_n - a_n) \in \langle u_1, \dots, u_k \rangle$ if and only if

$$\operatorname{rank}\left(\begin{array}{cccc} x_1 - a_1 & a_{11} & \cdots & a_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ x_n - a_n & a_{n1} & \cdots & a_{nk} \end{array}\right) = k.$$

As we are imposing the rank to be k we obtain n - k minors of order k + 1. This is, we obtain n - k equations with n unknowns: (x_1, \ldots, x_n) . Observation Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R} = \{O; B\}, B = \{e_1, \dots, e_n\}$. Let

$$L \equiv \begin{cases} a_{11}x_1 + \dots + a_{n1}x_n = b_1 \\ \vdots \\ a_{1r}x_1 + \dots + a_{nr}x_n = b_r \end{cases}$$

be the cartesian equations of an affine subspace L of dimension n - r.

Notice that the cartesian equations of an affine subspace L of dimension n - r are a system of r non homogeneous linear equations. If $P, Q \in L$ then the vector $u = \overline{PQ}$ satisfies the equations of the homogeneous linear system associated with \overline{L} .

Proof If $P(p_1, \ldots, p_n)$ and $Q(q_1, \ldots, q_n)$ then

$$u = \overline{PQ} = (q_1 - p_1, \dots, q_n - p_n)$$

and for $i = 1 \dots r$, we have

$$a_{1i}(p_1 - q_1) + \dots + a_{ni}(p_1 - q_1)$$

= $a_{1i}p_1 + \dots + a_{ni}p_n - (a_{1i}q_1 + \dots + a_{ni}q_n) \underset{P,Q \in L}{=} b_i - b_i$
= 0.

So, the system of cartesian equations of the vector space associated with L are:

$$\overline{L} \equiv \begin{cases} a_{11}x_1 + \dots + a_{n1}x_n = 0 \\ \vdots \\ a_{1r}x_1 + \dots + a_{nr}x_n = 0 \end{cases}$$

Equations of a line

Let (\mathbb{A}, V, ϕ) be affine space with an affine coordinate system $\mathcal{R} = \{O; B\}$, $B = \{e_1, \ldots, e_n\}$. A affine line $r \subset \mathbb{A}$ is an affine subspace of dimension 1; this is, $r = P + \langle u \rangle$. Let us suppose that (a_1, \ldots, a_n) are the coordinates of a point P in the coordinate system \mathcal{R} and

$$u = u_1 e_1 + \dots + u_n e_n.$$

So, a point $X \in r$ if and only if

$$\overline{OX} = \overline{OP} + \lambda u,$$

this is, if (x_1, \ldots, x_n) are the coordinates of X in the coordinate system \mathcal{R} then,

$$(x_1,\ldots,x_n)=(a_1,\ldots,a_n)+\lambda(u_1,\ldots,u_n)$$

or, equivalently the *parametric equations* of the line r.

$$\begin{cases} x_1 = a_1 + \lambda_1 u_1 \\ \vdots \\ x_n = a_n + \lambda_1 u_n \end{cases}$$

If we suppose $u_1 \neq 0$ (some u_i is non zero since the vector u is not null), the former system is written as follows:

$$\frac{x_1 - a_1}{u_1} = \dots = \frac{x_n - a_n}{u_n}$$

which is the *continous equation* of the line r. To finish, $X(x_1, \ldots, x_n)_{\mathcal{R}} \in L$ if and only if $\overline{XP} \in \langle u \rangle$ if and only if \overline{XP} and u are proportional. Therefore, $\overline{XP} \in \langle u \rangle$ if and only if

$$\operatorname{rank}\left(\begin{array}{cc} x_1 - a_1 & u_1 \\ \vdots & \vdots \\ x_n - a_n & u_n \end{array}\right) = 1.$$

As we are imposing the rank to be 1 we obtain n-1 minors of order 2. This is, we obtain n-1 cartesian equations of r.

Equations of a hyperplane

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R} = \{O; B\}$, $B = \{e_1, \ldots, e_n\}$. An affine hyperplane $H \subset \mathbb{A}$ in an affine subspace of dimension n - 1; it is therefore given by just one equation

$$a_1x_1 + \dots + a_nx_n = b.$$

Observation An affine subspace L of dimension k is the intersection of n-k independent hyperplanes.

Example 1 Obtain the parametric equations of the affine subspace L of \mathbb{A} which has the following cartesian equations with respect to \mathcal{R} :

$$L \equiv \begin{cases} x_1 + x_2 + 2x_3 = 1\\ 2x_2 - x_3 = 1 \end{cases}$$

First method.

We solve the non homogeneous linear system of equations defining *L*. The coefficient matrix of the system is:

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 2 & -1 \end{array}\right)$$

whose rank is 2. As

$$\operatorname{rank}\left(\begin{array}{cc}1 & 1\\ 0 & 2\end{array}\right) = 2$$

if we take $x_3 = \lambda$ the system can be written as follows:

$$\begin{cases} x_1 + x_2 + 2x_3 = 1\\ 2x_2 - x_3 = 1 \end{cases} \implies \begin{cases} x_1 + x_2 = 1 - 2\lambda\\ 2x_2 = 1 + \lambda\\ x_3 = \lambda \end{cases}$$

This is,

$$\begin{cases} x_1 = \frac{1}{2} - \frac{5}{2}\lambda \\ x_2 = \frac{1}{2} + \frac{1}{2}\lambda \\ x_3 = \lambda \end{cases}$$

which are the parametric equations of L.

Second method.

As dim $L = 3 - \operatorname{rank}(A) = 3 - 2 = 1$, L is a line, to determine L it is enough to give a point $P \in L$ and a vector v that generates the vector subspace $\overline{L} = \langle v \rangle$. A point $P \in L$ must satisfy the system of equations defined by L; for example take P(3, 0, -1).

A vector that generates the vector subspace \overline{L} is a nontrivial solution of the homogeneous linear system:

$$\begin{cases} x_1 + x_2 + 2x_3 = 0\\ 2x_2 - x_3 = 0 \end{cases}$$

For example the vector u = (-5, 1, 2). Therefore, $L = P + \overline{L} = P + \langle u \rangle$. So, $X(x_1, x_2, x_3) \in L$ if and only if $(x_1, x_2, x_3) = (3, 0, -1) + \lambda(-5, 1, 2)$; this is,

$$\begin{cases} x_1 = 3 - 5\lambda \\ x_2 = \lambda \\ x_3 = -1 + 2\lambda \end{cases}$$

which are the parametric equations of L.

Example 2

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R} = \{O; B\}$, $B = \{e_1, e_2, e_3\}$. Obtain the cartesian equations of the affine subspace $L = P + \overline{L}$, where $P(1, 2, -1)_{\mathcal{R}}$ and $\overline{L} = \langle u_1, u_2 \rangle$ with $u_1 = (1, 2, -1)$ and $u_2 = (2, 1, 1)$.

Solution.

The vectors u_1, u_2 which generate \overline{L} are linearly independent. Therefore, $\dim L = 2$.

A point $X(x_1, x_2, x_3)_{\mathcal{R}} \in L$ if and only if the vector

$$\overline{PX} = (x_1 - 1, x_2 - 2, x_3 + 1) \in \langle u_1, u_2 \rangle;$$

this is, if and only if

$$\operatorname{rank} \begin{pmatrix} x_1 - 1 & 1 & 2 \\ x_2 - 2 & 2 & 1 \\ x_3 + 1 & -1 & 1 \end{pmatrix} = 2 \iff 0 = \begin{vmatrix} x_1 - 1 & 1 & 2 \\ x_2 - 2 & 2 & 1 \\ x_3 + 1 & -1 & 1 \end{vmatrix} = 3x_1 - 3x_2 - 3x_3.$$

Therefore $L \equiv x_1 - x_2 - x_3 = 0$.

1.3.2 Intersection and sum of affine subspaces

Let (\mathbb{A}, V, ϕ) be a real affine space and L_1, L_2 two affine subspaces of \mathbb{A} . The *intersection* set of L_1 and L_2 :

$$L_1 \cap L_2 = \{ P \mid P \in L_1 \text{ y } P \in L_2 \}$$

is an affine subspace of A. If the intersection is not empty, $L_1 \cap L_2 \neq \emptyset$, then

$$\overline{L_1 \cap L_2} = \overline{L}_1 \cap \overline{L}_2.$$

We define the *sum* of L_1 and L_2 as the smallest affine subspace that contains L_1 and L_2 and it is denotated by L_1+L_2 . If $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ then

$$L_1 + L_2 = P_1 + \overline{L}_1 + \overline{L}_2 + \left\langle \overline{P_1 P_2} \right\rangle.$$

Observation If $L_1 \cap L_2 \neq \emptyset$ then

$$\overline{L_1 + L_2} = \overline{L}_1 + \overline{L}_2 + \left\langle \overline{P_1 P_2} \right\rangle = \overline{L}_1 + \overline{L}_2,$$

If $L_1 \cap L_2 = \emptyset$ then

$$\overline{L_1 + L_2} = \overline{L}_1 + \overline{L}_2 + \left\langle \overline{P_1 P_2} \right\rangle, \ P_1 \in L_1, \ P_2 \in L_2.$$

Two linear subspaces $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ intersect if and only if

$$\overline{P_1P_2} \in \overline{L}_1 + \overline{L}_2.$$

1.3.3 Parallelism

We say that two affine subspaces $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ of an affine space (\mathbb{A}, V, ϕ) are *parallel* if $\overline{L}_1 \subset \overline{L}_2$ or $\overline{L}_2 \subset \overline{L}_1$.

Two affine subspaces $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ may not intersect and they may not be parallel either, then they are skew lines.

1.3.4 Dimension Formula

Let $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ be two affine subspaces of an affine space (\mathbb{A}, V, ϕ) . The following statements hold:

1. If $L_1 \cap L_2 \neq \emptyset$, then

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(L_1 \cap L_2).$$

2. If $L_1 \cap L_2 = \emptyset$, then

 $\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(\overline{L}_1 \cap \overline{L}_2) + 1.$

Example

Let $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ be two affine lines in an affine space (\mathbb{A}, V, ϕ) of dimension n. The possible relative positions of L_1 and L_2 are: If $L_1 \cap L_2 \neq \emptyset$ then either $L_1 \cap L_2$ is a line and then $\dim(L_1 \cap L_2) = 1$ or $L_1 \cap L_2$ is a point and therefore $\dim(L_1 \cap L_2) = 0$. We have:

 $\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(L_1 \cap L_2)$ $L_1 \text{ and } L_2 \text{ are coincident}$ $L_1 \text{ and } L_2 \text{ intersect in on point} \implies \begin{cases} 1 = 1 + 1 - 1 \\ 2 = 1 + 1 - 0 \end{cases}$

If $L_1 \cap L_2 = \emptyset$ then $\overline{L}_1 \cap \overline{L}_2$ can either be a vector line or the null vector $\overline{0}$. We have:

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(\overline{L}_1 \cap \overline{L}_2) + 1$$

$$L_1 \text{ and } L_2 \text{ are skew lines} \implies \begin{cases} 2 = 1 + 1 - 1 + 1 \\ 3 = 1 + 1 - 0 + 1 \end{cases}$$

Definition

let $L_1 = P_1 + \langle u_1 \rangle$ and $L_2 = P_2 + \langle u_2 \rangle$ be two affine lines in an affine space (\mathbb{A}, V, ϕ) of dimension *n*. The following statements hold:

- 1. The lines L_1 and L_2 are skew lines if there does not exist a plane containing both lines; this is, if the vector system $\{u_1, u_2, \overline{P_1P_2}\}$ is linearly independent.
- 2. The lines L_1 and L_2 are *in the same plane* if they are not skew lines; this is, if the vector system $\{u_1, u_2, \overline{P_1P_2}\}$ is linearly dependent.
- **3**. The lines L_1 and L_2 *intersect* if $L_1 \cap L_2 \neq \emptyset$.
- 4. The lines L_1 and L_2 are *parallel* if $\overline{L_1} = \overline{L_2}$; this is, if u_1 and u_2 are proportional. If besides $L_1 \cap L_2 \neq \emptyset$ then the two lines are *coincident*.

To study the systems of equations of two subspaces is a simple way of studying the relative position between those subspaces. We are going to study two particularly simple cases:

I. Relative position of two hyperplanes

Let $H_1, H_2 \subset \mathbb{A}$ be two hyperplanes with cartesian equations

$$H_1 \equiv a_1 x_1 + \dots + a_n x_n = b,$$

$$H_2 \equiv a'_1 x_1 + \dots + a'_n x_n = b'.$$

The cartesian equations of their respective vector spaces are

$$\overline{H}_1 \equiv a_1 x_1 + \dots + a_n x_n = 0,$$

$$\overline{H}_2 \equiv a'_1 x_1 + \dots + a'_n x_n = 0.$$

Therefore, if there exists λ such that $(a'_1, \ldots, a'_n) = \lambda (a_1, \ldots, a_n)$ then $\overline{H}_1 = \overline{H}_2$ and the hyperplanes H_1 , H_2 are parallel.

If besides, $b' = \lambda b$ the the hyperplanes H_1 , H_2 are coincident.

If $b' \neq \lambda b$ then the hyperplanes H_1 , H_2 do not intersect ($H_1 \cap H_2 = \emptyset$).

II. Relative position between a line and a hyperplane

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R} = \{O; B\}$, $B = \{e_1, \ldots, e_n\}$. Let $r = P + \langle u \rangle$ be an affine line in \mathbb{A} with $P(a_1, \ldots, a_n)_{\mathcal{R}}$ and $u = (u_1, \ldots, u_n)$. Let H be an affine hyperplane with cartesian equation

$$a_1x_1 + \dots + a_nx_n = b.$$

The line r and the hyperplane H are parallel if the vector $u \in \overline{H}$; this is, if (u_1, \ldots, u_n) satisfies the homogeneous linear equation of the vector subspace \overline{H} ; this is, if

 $a_1u_1 + \dots + a_nu_n = 0.$