CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

3. Euclidean space

A real vector space E is an euclidean vector space if it is provided of an scalar product (or dot product); this is, a bilineal, symmetric and positivedefinite map

$$
\langle,\rangle: E \times E \longrightarrow \mathbb{R}
$$

We denote a scalar product by $\langle\bar{u}, \bar{v}\rangle$ or $\bar{u} \cdot \bar{v}$ indistinctly.

A scalar product defined in a vector space E allows the definition of a norm as follows:

$$
\|\|: E \longrightarrow \mathbb{R},\| v\|=\sqrt{\langle v, v\rangle}
$$

The angle between two non zero vectors \bar{u} and \bar{v} of an euclidean vector space E, is the real number that we will denote by $(\overline{\bar{u}, \bar{v})}$ such that

$$
\cos (\widehat{\bar{u}, \bar{v}})=\frac{\bar{u}_{1} \cdot \bar{u}_{2}}{\left\|\bar{u}_{1}\right\|\left\|\bar{u}_{2}\right\|}
$$

3. AFFINE EUCLIDEAN SPACE

Definition

An affine space (\mathbb{A}, V, ϕ) is an euclidean affine space if the vector space V is an euclidean vector space.
Notation
We will denote the euclidean vector spaces by E and the euclidean affine spaces by (\mathbb{E}, E, ϕ).
Definition
A distance d inside an affine space \mathbb{A} is a map

$$
d: \mathbb{A} \times \mathbb{A} \longrightarrow \mathbb{R},(P, Q) \longmapsto d(P, Q)
$$

that verifies:

1. d is positive-definite; this is, $d(P, Q) \geq 0$ and $d(P, Q)=0$ if and only if $P=Q$.
2. d is symmetric; this is, $d(P, Q)=d(Q, P)$.
3. d verifies the triangle inequality; this is, $d(P, Q) \leq d(P, R)+d(R, Q)$.
3.1 Orthogonal coordinate systems

An affine coordinate system $\mathcal{R}=\left\{O ;\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}\right\}$ in an euclidean affine space (\mathbb{E}, E, ϕ) is called orthogonal (resp. orthonormal), if the basis $B=$ $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ of the vector space V is orthogonal (resp. orthonormal).

Change of orthonormal coordinate system
Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension n. Let $\mathcal{R}=\{O ; B\}$ and $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}\right\}$ be two orthonormal coordinate systems of \mathbb{E}.

If $O^{\prime}\left(a_{1}, \ldots, a_{n}\right)$ and $M\left(B^{\prime}, B\right)$ is the matrix of change of basis then the matrix of the change of coordinate system from \mathcal{R}^{\prime} to \mathcal{R} is:

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
a_{1} & & & \\
\vdots & M\left(B^{\prime}, B\right) & \\
a_{n} & &
\end{array}\right)
$$

The following statements hold:

1. The matrix $M\left(B^{\prime}, B\right)$ is an orthogonal matrix; this is, $M\left(B^{\prime}, B\right)^{-1}=$ $M\left(B^{\prime}, B\right)^{t}$.
2. $\operatorname{det}\left(M\left(B^{\prime}, B\right)= \pm 1\right.$. If $\operatorname{det}\left(M\left(B^{\prime}, B\right)=1\right.$ we say that B^{\prime} and B have the same orientation and if $\operatorname{det}\left(M\left(B^{\prime}, B\right)=-1\right.$ we say that B^{\prime} and B have different orientation.

3.2 Orthogonal affine subspaces

Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension n.
We must remember that, given a vector subspace $W \subset E$, the set defined as follows:

$$
\{\bar{v} \in E \mid \bar{v} \cdot \bar{w}=0 \text { for every } \bar{w} \in W\}
$$

is a vector subspace of E that we denote W^{\perp} and call orthogonal subpace to W. It holds

$$
E=W \oplus W^{\perp}
$$

Therefore,

$$
\operatorname{dim} E=\operatorname{dim} W+\operatorname{dim} W^{\perp} .
$$

Definition
Two affine subspaces L_{1} and L_{2} of \mathbb{E} are orthogonal if their respective associated vector subspaces \bar{L}_{1} and \bar{L}_{2} are orthogonal; this is, any vector $\bar{u} \in \bar{L}_{1}$ is orthogonal to any vector $\bar{v} \in \bar{L}_{2}$. If $L_{1}=P_{1}+\left\langle\bar{u}_{1}, \ldots, \bar{u}_{s}\right\rangle$ and $L_{2}=P_{2}+\left\langle\bar{v}_{1}, \ldots, \bar{v}_{r}\right\rangle$ then L_{1} and L_{2} are orthogonal if $\bar{u}_{i} \cdot \bar{v}_{j}=0$ for $i=1, \ldots, s$ and $j=1, \ldots, r$.

Notice that $\bar{L}_{1} \subset \bar{L}_{2}$ and therefore,

$$
\operatorname{dim} \bar{L}_{1}+\operatorname{dim} \bar{L}_{2}=\operatorname{dim} \bar{L}_{1}+n-\operatorname{dim} \bar{L}_{2}^{\perp} \leq n .
$$

If $\operatorname{dim} \bar{L}_{1}+\operatorname{dim} \bar{L}_{2} \geq n$, we will say that L_{1}, L_{2} are orthogonal if ${\overline{L_{1}}}^{\perp}$ and ${\overline{L_{2}}}^{\perp}$ are orthogonal.
Notation. If L_{1} and L_{2} are orthogonal, we will write $L_{1} \perp L_{2}$.

Definition

An affine subspace L^{\prime} with associated vector subspace \bar{L}^{\prime} is called orthogonal to an affine subspace L with associated vector subspace \bar{L} if \bar{L} and $\overline{L^{\prime}}$ are orthogonal and besides $V=\bar{L} \oplus \bar{L}^{\prime}$.

Particular cases

1. Two lines $r=P+\langle\bar{v}\rangle, r^{\prime}=P^{\prime}+\left\langle\bar{v}^{\prime}\right\rangle$ are orthogonal if and only if $\bar{v} \cdot \bar{v}^{\prime}=0$.
2. In dimension 3, a line $r=P+\langle\bar{v}\rangle$ is the orthogonal subspace to a plane with associated vector subspace W if \bar{v} is orthogonal to any vector of W (in this case, $V=W \oplus\langle\bar{v}\rangle$).
3. Let $\pi=P+\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle$ be an affine plane. The line $r=P+\langle\bar{v}\rangle$ is orthogonal to π if the vector \bar{v} is orthogonal to vectors \bar{u}_{1} and \bar{u}_{2}.
4. In dimension 3, a line $r=P+\langle\bar{v}\rangle$ is orthogonal to a plane $\pi=P+\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle$ if the vector \bar{v} is parallel to the normal vector to the plane; this is, \bar{v} and \bar{n} are parallel, where $\bar{n}=\bar{u}_{1} \wedge \bar{u}_{2}$ and \wedge denotes the cross product in \mathbb{E}_{3}.
5. In dimension 3, two planes π_{1} and π_{2} are orthogonal if their respective normal vectors are orthogonal.
3.2.1 Orthogonal projection of a point on an affine subspace

Let L be an affine subspace of an euclidean affine space \mathbb{E} and let P be a point of \mathbb{E} that does not belong to L (this is, $P \in \mathbb{E} \backslash L$).

The orthogonal projection of P on L is P_{0}, the point of intersection of the orthogonal subspace to L and containing P with L.
3.3 Distance between two affine subspaces

Let (\mathbb{E}, E, ϕ) be an euclidean affine subspace of dimension n. Let L_{1} and L_{2} be two affine subspaces of \mathbb{E}. We define the distance between L_{1} and L_{2} as the minimum of the distances between its points; this is,

$$
d\left(L_{1}, L_{2}\right)=\min \left\{d\left(P_{1}, P_{2}\right) \mid P_{1} \in L_{1} \text { and } P_{2} \in L_{2}\right\}
$$

Notice that if $L_{1} \cap L_{2} \neq \emptyset$ then $d\left(L_{1}, L_{2}\right)=0$.

- If L_{1} and L_{2} are parallel subspaces, let us suppose that $\bar{L}_{1} \subset \bar{L}_{2}$ then

$$
d\left(L_{1}, L_{2}\right)=d\left(P, L_{2}\right)=\min \left\{d\left(P, P_{2}\right) \mid P_{2} \in L_{2}\right\}
$$

where P is an arbitrary point of L_{1}.

- If $L_{1}=P_{1}+\bar{L}_{1}$ and $L_{2}=P_{2}+\bar{L}_{2}$ are not parallel then we build a subspace H, which is parallel with one of them and contains the other. For example, we can take $H=P_{1}+\bar{L}_{1}+\bar{L}_{2}$. The subspace H contains L_{1} and it is parallel with L_{2}; therefore,

$$
d\left(L_{1}, L_{2}\right)=d\left(H, L_{2}\right)
$$

and we are in the first case.
Thus, the problem is just about computing the distance from a point P to a subspace L.
3.3.1 Distance between a point P and an affine subspace L

Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension n. Let $P \in \mathbb{E}$ and let $L=Q+\bar{L}$ be an affine subspace of \mathbb{E}, with $P \notin L$. Then, if we call P_{0} to the orthogonal projection of P on L, we have:

$$
d(P, L)=d\left(P, P_{0}\right)=\left\|\overline{P P_{0}}\right\| .
$$

Now we will study some particular cases of distance between affine subspaces.

Distance between a point P and a hyperplane H
Let P be a point with coordinates $\left(p_{1}, \ldots, p_{n}\right)$ and let H be the hyperplane with cartesian equation $a_{1} x_{1}+\cdots+a_{n} x_{n}+b=0$.
If we denote the orthogonal projection of P on H by P_{0} we have:

$$
d(P, H)=d\left(P, P_{0}\right)
$$

Let \bar{u} be the unit vector normal to the hyperplane; this is,

$$
\bar{u}=\frac{\left(a_{1}, \ldots, a_{n}\right)}{\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}}
$$

The following formula hold:

$$
\begin{aligned}
d\left(P, P_{0}\right) & =\left|\overline{P P_{0}} \cdot \bar{u}\right|=\left|\left(x_{1}-p_{1}, \ldots, x_{n}-p_{n}\right) \cdot \frac{\left(a_{1}, \ldots, a_{n}\right)}{\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}}\right| \\
& =\frac{\left|a_{1} x_{1}+\cdots+a_{1} x_{n}-\left(a_{1} p_{1}+\cdots+a_{1} p_{n}\right)\right|}{\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}} \\
& =\frac{\left|a_{1} p_{1}+\cdots+a_{1} p_{n}+b\right|}{\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}}
\end{aligned}
$$

Distance between a point P and a line r
Let us consider $P \in \mathbb{E}$ and let $r \equiv Q+\langle\bar{u}\rangle$ be a line in \mathbb{E}. By P_{0} we denote the orthogonal projection of P on r, then we have:

$$
d(P, r)=d\left(P, P_{0}\right),
$$

where P_{0} is a point of the line r and it holds $\overline{P P_{0}} \cdot \bar{u}=0$.
Distance between two skew kines in \mathbb{E}_{3}
Let $r_{1} \equiv P_{1}+\left\langle\bar{u}_{1}\right\rangle$ and $r_{2} \equiv P_{2}+\left\langle\bar{u}_{2}\right\rangle$ be two lines in \mathbb{E}_{3}. Let us build a plane parallel with one of them, which contains the other one; for example, the plane,

$$
\pi \equiv P_{2}+\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle
$$

is parallel to the line r_{1} and contains the line r_{2}.

Also, let us consider the unit vector normal to the plane π; this is, the vector

$$
\bar{u}=\frac{1}{\left\|\bar{u}_{1} \wedge \bar{u}_{2}\right\|} \bar{u}_{1} \wedge \bar{u}_{2}
$$

where \wedge denotes the cross product in \mathbb{E}_{3}. We have:

$$
d\left(r_{1}, r_{2}\right)=d\left(r_{1}, \pi\right)
$$

Let us consider the parallelepiped whose edges are vectors $\overline{P_{2} P_{1}}, \bar{u}_{1}$ and \bar{u}_{2}.
The volume of the mentioned parallelepiped is the absolute value of the triple product of \bar{u}_{1}, \bar{u}_{2} and $\overline{P_{2} P_{1}}$; this is,

$$
V=\left|\left[\bar{u}_{1}, \bar{u}_{2}, \overline{P_{2} P_{1}}\right]\right|=\left|\overline{P_{2} P_{1}} \cdot\left(\bar{u}_{1} \wedge \bar{u}_{2}\right)\right|=\left\|\overline{P_{2} P_{1}}\right\|\left\|\bar{u}_{1} \wedge \bar{u}_{2}\right\||\cos \alpha|
$$

where α is the angle formed by vectors $\overline{P_{2} P_{1}}$ and $\bar{u}_{1} \wedge \bar{u}_{2}$.

The area of the base of the parallelepiped is:

$$
A=\left\|\bar{u}_{1} \wedge \bar{u}_{2}\right\|
$$

The distance between r_{1} and π is the height of the above mentioned parallelepiped.
Therefore,

$$
d\left(r_{1}, r_{2}\right)=d\left(r_{1}, \pi\right)=\frac{\left|\left[\bar{u}_{1}, \bar{u}_{2}, \overline{P_{2} P_{1}}\right]\right|}{\left\|\bar{u}_{1} \wedge \bar{u}_{2}\right\|}=\left\|\overline{P_{2} P_{1}}\right\||\cos \alpha| .
$$

