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CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY
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3. Euclidean space

A real vector space E is an euclidean vector space if it is provided of an
scalar product ( or dot product); this is, a bilineal, symmetric and positive-
definite map

〈 , 〉 : E × E −→ R.
We denote a scalar product by 〈u, v〉 or u · v indistinctly.

A scalar product defined in a vector space E allows the definition of a norm
as follows:

‖‖ : E −→ R, ‖ v ‖=
√
〈v, v〉

The angle between two non zero vectors u and v of an euclidean vector
space E, is the real number that we will denote by (̂u, v) such that

cos(û, v) =
u1 · u2
‖u1‖ ‖u2‖

.
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3. AFFINE EUCLIDEAN SPACE
Definition
An affine space (A, V, φ) is an euclidean affine space if the vector space V
is an euclidean vector space.
Notation
We will denote the euclidean vector spaces by E and the euclidean affine
spaces by (E, E, φ).
Definition
A distance d inside an affine space A is a map

d : A× A −→ R, (P,Q) 7−→ d(P,Q)

that verifies:
1. d is positive-definite; this is, d(P,Q) ≥ 0 and d(P,Q) = 0 if and only if
P = Q.

2. d is symmetric; this is, d(P,Q) = d(Q,P ).

3. d verifies the triangle inequality; this is,d(P,Q) ≤ d(P,R) + d(R,Q).
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3.1 Orthogonal coordinate systems

An affine coordinate system R = {O; {e1, . . . , en}} in an euclidean affine
space (E, E, φ) is called orthogonal (resp. orthonormal), if the basis B =

{e1, . . . , en} of the vector space V is orthogonal (resp. orthonormal).

Change of orthonormal coordinate system

Let (E, E, φ) be an euclidean affine space of dimension n. Let R = {O;B}
and R′ = {O′;B′} be two orthonormal coordinate systems of E.

IfO′(a1, . . . , an) andM(B′, B) is the matrix of change of basis then the matrix
of the change of coordinate system from R′ to R is:

Mf(R′,R) =


1 0 · · · 0

a1
... M(B′, B)

an
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The following statements hold:

1. The matrix M(B′, B) is an orthogonal matrix; this is, M(B′, B)−1 =

M(B′, B)t.

2. det(M(B′, B) = ±1. If det(M(B′, B) = 1 we say that B′ and B have the
same orientation and if det(M(B′, B) = −1 we say that B′ and B have
different orientation.
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3.2 Orthogonal affine subspaces

Let (E, E, φ) be an euclidean affine space of dimension n.
We must remember that, given a vector subspace W ⊂ E, the set defined
as follows:

{v ∈ E | v · w = 0 for every w ∈ W}
is a vector subspace of E that we denote W⊥ and call orthogonal subpace
to W . It holds

E = W ⊕W⊥.

Therefore,
dimE = dimW + dimW⊥.

Definition

Two affine subspaces L1 and L2 of E are orthogonal if their respective as-
sociated vector subspaces L1 and L2 are orthogonal; this is, any vector
u ∈ L1 is orthogonal to any vector v ∈ L2. If L1 = P1 + 〈u1, . . . , us〉 and
L2 = P2+〈v1, . . . , vr〉 then L1 and L2 are orthogonal if ui·vj = 0 for i = 1, . . . , s

and j = 1, . . . , r.



Notice that L1 ⊂ L2 and therefore,

dimL1 + dimL2 = dimL1 + n− dimL2
⊥ ≤ n.

If dimL1 + dimL2 ≥ n, we will say that L1, L2 are orthogonal if L1
⊥ and L2

⊥

are orthogonal.

Notation. If L1 and L2 are orthogonal, we will write L1 ⊥ L2.
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Definition
An affine subspace L′ with associated vector subspace L′ is called orthog-
onal to an affine subspace L with associated vector subspace L if L and L′

are orthogonal and besides V = L⊕ L′.

Particular cases

1. Two lines r = P + 〈v〉, r′ = P ′+ 〈v′〉 are orthogonal if and only if v ·v′ = 0.

2. In dimension 3, a line r = P + 〈v〉 is the orthogonal subspace to a plane
with associated vector subspace W if v is orthogonal to any vector of
W (in this case, V = W ⊕ 〈v〉).

3. Let π = P +〈u1, u2〉 be an affine plane. The line r = P +〈v〉 is orthogonal
to π if the vector v is orthogonal to vectors u1 and u2.

4. In dimension 3, a line r = P+〈v〉 is orthogonal to a plane π = P+〈u1, u2〉
if the vector v is parallel to the normal vector to the plane; this is, v and
n are parallel, where n = u1 ∧ u2 and ∧ denotes the cross product in E3.
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5. In dimension 3, two planes π1 and π2 are orthogonal if their respective
normal vectors are orthogonal.

3.2.1 Orthogonal projection of a point on an affine subspace

Let L be an affine subspace of an euclidean affine space E and let P be a
point of E that does not belong to L (this is, P ∈ E�L).

The orthogonal projection of P on L is P0, the point of intersection of the
orthogonal subspace to L and containing P with L.
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3.3 Distance between two affine subspaces

Let (E, E, φ) be an euclidean affine subspace of dimension n. Let L1 and L2

be two affine subspaces of E. We define the distance between L1 and L2

as the minimum of the distances between its points; this is,

d(L1, L2) = min {d(P1, P2) | P1 ∈ L1 and P2 ∈ L2} .

Notice that if L1 ∩ L2 6= ∅ then d(L1, L2) = 0.

If L1 and L2 are parallel subspaces, let us suppose that L1 ⊂ L2 then

d(L1, L2) = d(P,L2) = min {d(P, P2) | P2 ∈ L2}

where P is an arbitrary point of L1.
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If L1 = P1 + L1 and L2 = P2 + L2 are not parallel then we build a sub-
space H, which is parallel with one of them and contains the other. For
example, we can take H = P1 + L1 + L2. The subspace H contains L1

and it is parallel with L2; therefore,

d(L1, L2) = d(H,L2)

and we are in the first case.

Thus, the problem is just about computing the distance from a point P to a
subspace L.
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3.3.1 Distance between a point P and an affine subspace L

Let (E, E, φ) be an euclidean affine space of dimension n. Let P ∈ E and
let L = Q + L be an affine subspace of E, with P /∈ L. Then, if we call P0 to
the orthogonal projection of P on L, we have:

d(P,L) = d(P, P0) =
∥∥PP0

∥∥ .
Now we will study some particular cases of distance between affine sub-
spaces.

Distance between a point P and a hyperplane H

Let P be a point with coordinates (p1, . . . , pn) and let H be the hyperplane
with cartesian equation a1x1 + · · · + anxn + b = 0.

If we denote the orthogonal projection of P on H by P0 we have:

d(P,H) = d(P, P0).
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Let u be the unit vector normal to the hyperplane; this is,

u =
(a1, . . . , an)√
a21 + · · · + a2n

The following formula hold:

d(P, P0) = |PP0 · u| =

∣∣∣∣∣(x1 − p1, . . . , xn − pn) · (a1, . . . , an)√
a21 + · · · + a2n

∣∣∣∣∣
=
|a1x1 + · · · + a1xn − (a1p1 + · · · + a1pn)|√

a21 + · · · + a2n

=
|a1p1 + · · · + a1pn + b|√

a21 + · · · + a2n
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Distance between a point P and a line r

Let us consider P ∈ E and let r ≡ Q + 〈u〉 be a line in E. By P0 we denote
the orthogonal projection of P on r, then we have:

d(P, r) = d(P, P0),

where P0 is a point of the line r and it holds PP0 · u = 0.

Distance between two skew kines in E3

Let r1 ≡ P1 + 〈u1〉 and r2 ≡ P2 + 〈u2〉 be two lines in E3. Let us build a plane
parallel with one of them, which contains the other one; for example, the
plane,

π ≡ P2 + 〈u1, u2〉
is parallel to the line r1 and contains the line r2.
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Also, let us consider the unit vector normal to the plane π; this is, the vector

u =
1

‖u1 ∧ u2‖
u1 ∧ u2

where ∧ denotes the cross product in E3. We have:

d(r1, r2) = d(r1, π)

Let us consider the parallelepiped whose edges are vectors P2P1, u1 and
u2.

The volume of the mentioned parallelepiped is the absolute value of the
triple product of u1, u2 and P2P1; this is,

V =
∣∣[u1, u2, P2P1

]∣∣ = ∣∣P2P1 · (u1 ∧ u2)
∣∣ = ∥∥P2P1

∥∥ ‖u1 ∧ u2‖ |cosα|
where α is the angle formed by vectors P2P1 and u1 ∧ u2.



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

The area of the base of the parallelepiped is:

A = ‖u1 ∧ u2‖

The distance between r1 and π is the height of the above mentioned paral-
lelepiped.

Therefore,

d(r1, r2) = d(r1, π) =

∣∣[u1, u2, P2P1

]∣∣
‖u1 ∧ u2‖

=
∥∥P2P1

∥∥ |cosα| .


