AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

3. Euclidean space

A real vector space E is an euclidean vector space if it is provided of an scalar product (or dot product); this is, a bilineal, symmetric and positive-definite map

$$\langle , \rangle : E \times E \longrightarrow \mathbb{R}.$$

We denote a scalar product by $\langle \overline{u}, \overline{v} \rangle$ or $\overline{u} \cdot \overline{v}$ indistinctly.

A scalar product defined in a vector space E allows the definition of a norm as follows:

$$\|\|: E \longrightarrow \mathbb{R}, \|v\| = \sqrt{\langle v, v \rangle}$$

The *angle* between two non zero vectors \overline{u} and \overline{v} of an euclidean vector space *E*, is the real number that we will denote by $\widehat{(\overline{u}, \overline{v})}$ such that

$$\cos(\widehat{\overline{u}, \overline{v}}) = \frac{\overline{u}_1 \cdot \overline{u}_2}{\|\overline{u}_1\| \|\overline{u}_2\|}.$$

3. AFFINE EUCLIDEAN SPACE

Definition

An affine space (\mathbb{A}, V, ϕ) is an *euclidean affine space* if the vector space V is an euclidean vector space.

Notation

We will denote the euclidean vector spaces by E and the euclidean affine spaces by $(\mathbb{E}, E, \phi).$

Definition

A distance d inside an affine space \mathbb{A} is a map

$$d\colon \mathbb{A}\times\mathbb{A}\longrightarrow\mathbb{R}\text{, }(P,Q)\longmapsto d(P,Q)$$

that verifies:

- 1. *d* is positive-definite; this is, $d(P,Q) \ge 0$ and d(P,Q) = 0 if and only if P = Q.
- 2. *d* is symmetric; this is, d(P,Q) = d(Q,P).
- 3. *d* verifies the triangle inequality; this is, $d(P,Q) \le d(P,R) + d(R,Q)$.

3.1 Orthogonal coordinate systems

An affine coordinate system $\mathcal{R} = \{O; \{\overline{e}_1, \dots, \overline{e}_n\}\}$ in an euclidean affine space (\mathbb{E}, E, ϕ) is called *orthogonal* (resp. *orthonormal*), if the basis $B = \{\overline{e}_1, \dots, \overline{e}_n\}$ of the vector space V is orthogonal (resp. orthonormal).

Change of orthonormal coordinate system

Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension *n*. Let $\mathcal{R} = \{O; B\}$ and $\mathcal{R}' = \{O'; B'\}$ be two orthonormal coordinate systems of \mathbb{E} .

If $O'(a_1, \ldots, a_n)$ and M(B', B) is the matrix of change of basis then the matrix of the change of coordinate system from \mathcal{R}' to \mathcal{R} is:

$$M_f(\mathcal{R}', \mathcal{R}) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_1 & & \\ \vdots & M(B', B) \\ a_n & & \end{pmatrix}$$

The following statements hold:

- 1. The matrix M(B', B) is an orthogonal matrix; this is, $M(B', B)^{-1} = M(B', B)^t$.
- 2. $det(M(B', B) = \pm 1$. If det(M(B', B) = 1 we say that B' and B have the same orientation and if det(M(B', B) = -1 we say that B' and B have different orientation.

3.2 Orthogonal affine subspaces

Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension n. We must remember that, given a vector subspace $W \subset E$, the set defined as follows:

 $\{\overline{v} \in E \mid \overline{v} \cdot \overline{w} = 0 \text{ for every } \overline{w} \in W\}$

is a vector subspace of E that we denote W^{\perp} and call *orthogonal subpace* to W. It holds

$$E = W \oplus W^{\perp}.$$

Therefore,

$$\dim E = \dim W + \dim W^{\perp}.$$

Definition

Two affine subspaces L_1 and L_2 of \mathbb{E} are *orthogonal* if their respective associated vector subspaces \overline{L}_1 and \overline{L}_2 are orthogonal; this is, any vector $\overline{u} \in \overline{L}_1$ is orthogonal to any vector $\overline{v} \in \overline{L}_2$. If $L_1 = P_1 + \langle \overline{u}_1, \ldots, \overline{u}_s \rangle$ and $L_2 = P_2 + \langle \overline{v}_1, \ldots, \overline{v}_r \rangle$ then L_1 and L_2 are orthogonal if $\overline{u}_i \cdot \overline{v}_j = 0$ for $i = 1, \ldots, s$ and $j = 1, \ldots, r$. Notice that $\overline{L}_1 \subset \overline{L}_2$ and therefore,

$$\dim \overline{L}_1 + \dim \overline{L}_2 = \dim \overline{L}_1 + n - \dim \overline{L}_2^{\perp} \le n.$$

If dim \overline{L}_1 + dim $\overline{L}_2 \ge n$, we will say that L_1 , L_2 are *orthogonal* if \overline{L}_1^{\perp} and \overline{L}_2^{\perp} are orthogonal.

Notation. If L_1 and L_2 are orthogonal, we will write $L_1 \perp L_2$.

Definition

An affine subspace L' with associated vector subspace \overline{L}' is called *orthogonal* to an affine subspace L with associated vector subspace \overline{L} if \overline{L} and $\overline{L'}$ are orthogonal and besides $V = \overline{L} \oplus \overline{L'}$.

Particular cases

- 1. Two lines $r = P + \langle \overline{v} \rangle$, $r' = P' + \langle \overline{v}' \rangle$ are orthogonal if and only if $\overline{v} \cdot \overline{v}' = 0$.
- 2. In dimension 3, a line $r = P + \langle \overline{v} \rangle$ is the orthogonal subspace to a plane with associated vector subspace W if \overline{v} is orthogonal to any vector of W (in this case, $V = W \oplus \langle \overline{v} \rangle$).
- 3. Let $\pi = P + \langle \overline{u}_1, \overline{u}_2 \rangle$ be an affine plane. The line $r = P + \langle \overline{v} \rangle$ is orthogonal to π if the vector \overline{v} is orthogonal to vectors \overline{u}_1 and \overline{u}_2 .
- 4. In dimension 3, a line $r = P + \langle \overline{v} \rangle$ is orthogonal to a plane $\pi = P + \langle \overline{u}_1, \overline{u}_2 \rangle$ if the vector \overline{v} is parallel to the normal vector to the plane; this is, \overline{v} and \overline{n} are parallel, where $\overline{n} = \overline{u}_1 \wedge \overline{u}_2$ and \wedge denotes the cross product in \mathbb{E}_3 .

- 5. In dimension 3, two planes π_1 and π_2 are orthogonal if their respective normal vectors are orthogonal.
- 3.2.1 Orthogonal projection of a point on an affine subspace

Let *L* be an affine subspace of an euclidean affine space \mathbb{E} and let *P* be a point of \mathbb{E} that does not belong to *L* (this is, $P \in \mathbb{E} \setminus L$).

The *orthogonal projection of* P *on* L is P_0 , the point of intersection of the orthogonal subspace to L and containing P with L.

3.3 Distance between two affine subspaces

Let (\mathbb{E}, E, ϕ) be an euclidean affine subspace of dimension n. Let L_1 and L_2 be two affine subspaces of \mathbb{E} . We define the *distance between* L_1 and L_2 as the minimum of the distances between its points; this is,

$$d(L_1, L_2) = \min \{ d(P_1, P_2) \mid P_1 \in L_1 \text{ and } P_2 \in L_2 \}.$$

Notice that if $L_1 \cap L_2 \neq \emptyset$ then $d(L_1, L_2) = 0$.

• If L_1 and L_2 are parallel subspaces, let us suppose that $\overline{L}_1 \subset \overline{L}_2$ then

$$d(L_1, L_2) = d(P, L_2) = \min \{ d(P, P_2) \mid P_2 \in L_2 \}$$

where P is an arbitrary point of L_1 .

• If $L_1 = P_1 + \overline{L}_1$ and $L_2 = P_2 + \overline{L}_2$ are not parallel then we build a subspace H, which is parallel with one of them and contains the other. For example, we can take $H = P_1 + \overline{L}_1 + \overline{L}_2$. The subspace H contains L_1 and it is parallel with L_2 ; therefore,

$$d(L_1, L_2) = d(H, L_2)$$

and we are in the first case.

Thus, the problem is just about computing the distance from a point P to a subspace L.

3.3.1 Distance between a point P and an affine subspace L

Let (\mathbb{E}, E, ϕ) be an euclidean affine space of dimension n. Let $P \in \mathbb{E}$ and let $L = Q + \overline{L}$ be an affine subspace of \mathbb{E} , with $P \notin L$. Then, if we call P_0 to the orthogonal projection of P on L, we have:

$$d(P,L) = d(P,P_0) = \left\|\overline{PP_0}\right\|.$$

Now we will study some particular cases of distance between affine subspaces.

Distance between a point P and a hyperplane H

Let *P* be a point with coordinates (p_1, \ldots, p_n) and let *H* be the hyperplane with cartesian equation $a_1x_1 + \cdots + a_nx_n + b = 0$.

If we denote the orthogonal projection of P on H by P_0 we have:

$$d(P,H) = d(P,P_0).$$

Let \overline{u} be the unit vector normal to the hyperplane; this is,

.

$$\overline{u} = \frac{(a_1, \dots, a_n)}{\sqrt{a_1^2 + \dots + a_n^2}}$$

The following formula hold:

$$d(P, P_0) = |\overline{PP_0} \cdot \overline{u}| = \left| (x_1 - p_1, \dots, x_n - p_n) \cdot \frac{(a_1, \dots, a_n)}{\sqrt{a_1^2 + \dots + a_n^2}} \right|$$
$$= \frac{|a_1 x_1 + \dots + a_1 x_n - (a_1 p_1 + \dots + a_1 p_n)|}{\sqrt{a_1^2 + \dots + a_n^2}}$$
$$= \frac{|a_1 p_1 + \dots + a_1 p_n + b|}{\sqrt{a_1^2 + \dots + a_n^2}}$$

Distance between a point P and a line r

Let us consider $P \in \mathbb{E}$ and let $r \equiv Q + \langle \overline{u} \rangle$ be a line in \mathbb{E} . By P_0 we denote the orthogonal projection of P on r, then we have:

$$d(P,r) = d(P,P_0),$$

where P_0 is a point of the line r and it holds $\overline{PP_0} \cdot \overline{u} = 0$.

Distance between two skew kines in \mathbb{E}_3

Let $r_1 \equiv P_1 + \langle \overline{u}_1 \rangle$ and $r_2 \equiv P_2 + \langle \overline{u}_2 \rangle$ be two lines in \mathbb{E}_3 . Let us build a plane parallel with one of them, which contains the other one; for example, the plane,

$$\pi \equiv P_2 + \langle \overline{u}_1, \overline{u}_2 \rangle$$

is parallel to the line r_1 and contains the line r_2 .

Also, let us consider the unit vector normal to the plane π ; this is, the vector

$$\overline{u} = \frac{1}{\|\overline{u}_1 \wedge \overline{u}_2\|} \overline{u}_1 \wedge \overline{u}_2$$

where \wedge denotes the cross product in \mathbb{E}_3 . We have:

$$d(r_1, r_2) = d(r_1, \pi)$$

Let us consider the parallelepiped whose edges are vectors $\overline{P_2P_1}$, \overline{u}_1 and \overline{u}_2 .

The volume of the mentioned parallelepiped is the absolute value of the triple product of \overline{u}_1 , \overline{u}_2 and $\overline{P_2P_1}$; this is,

$$V = \left| \left[\overline{u}_1, \overline{u}_2, \overline{P_2 P_1} \right] \right| = \left| \overline{P_2 P_1} \cdot (\overline{u}_1 \wedge \overline{u}_2) \right| = \left\| \overline{P_2 P_1} \right\| \left\| \overline{u}_1 \wedge \overline{u}_2 \right\| \left| \cos \alpha \right|$$

where α is the angle formed by vectors $\overline{P_2P_1}$ and $\overline{u}_1 \wedge \overline{u}_2$.

The area of the base of the parallelepiped is:

$$A = \|\overline{u}_1 \wedge \overline{u}_2\|$$

The distance between r_1 and π is the height of the above mentioned parallelepiped.

Therefore,

$$d(r_1, r_2) = d(r_1, \pi) = \frac{\left| \left[\overline{u}_1, \overline{u}_2, \overline{P_2 P_1} \right] \right|}{\left\| \overline{u}_1 \wedge \overline{u}_2 \right\|} = \left\| \overline{P_2 P_1} \right\| \left| \cos \alpha \right|.$$