CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

4. ISOMETRIES

Definition

Let (\mathbb{E}, E, ϕ) and $\left(\mathbb{E}^{\prime}, E^{\prime}, \phi^{\prime}\right)$ be two euclidean affine spaces. An affine transformation $f: \mathbb{E} \longrightarrow \mathbb{E}^{\prime}$ is an isometry if

$$
d^{\prime}(f(P), f(Q))=d(P, Q), \quad \forall P, Q \in \mathbb{E},
$$

where d is the distance defined in \mathbb{E} and d^{\prime} is the distance defined in \mathbb{E}^{\prime}.
Observation Isometries are always injective, because if $f(P)=f(Q)$ then

$$
0=d(f(P), f(Q))=d(P, Q)
$$

implies $P=Q$.

Proposition

An affine transformation $f: \mathbb{E} \longrightarrow \mathbb{E}^{\prime}$ is an isometry if and only if its associated linear transformation $\bar{f}: E \longrightarrow E^{\prime}$ preserves the dot product (this is, \bar{f} is a vector isometry).
Vector isometries are also called orthogonal endomorphisms.

Some properties of vector isometries Let $\bar{f}: E \longrightarrow E^{\prime}$ be a vector isometry.

1. For all $\bar{u} \in E$ then $\|\bar{u}\|=\|f(\bar{u})\|$.
2. For all $\bar{u}, \bar{v} \in E$ then

$$
\cos (\widehat{\bar{u}, \widehat{v}})=\frac{\bar{u} \cdot \bar{v}}{\|\bar{u}\|\|\bar{v}\|}=\frac{\bar{f}(\bar{u}) \cdot \bar{f}(\bar{v})}{\|\bar{f}(\bar{u})\|\|\bar{f}(\bar{v})\|}=\cos (\bar{f}(\widehat{\bar{u}), \bar{f}}(\bar{v})) .
$$

3. If λ is a real eigenvalue of \bar{f} then $\lambda= \pm 1$.
4. If 1 and -1 are eigenvalues of \bar{f} then the eigenspaces V_{1} and V_{-1} are orthogonal subspaces.
5. Let $E=E^{\prime}$ with dimension n, the matrix A associated to \bar{f} in a orthonormal basis of E is an orthogonal matrix, that is $A^{-1}=A^{t}$ or equivalently $A A^{t}=I_{n}$.

Definition
A movement is an isometry of an euclidean affine space \mathbb{E} on itself.

4.1 Classification of isometries

The linear transformation \bar{f} associated to a movement $f: \mathbb{E} \longrightarrow \mathbb{E}$, is orthogonal, therefore, in an orthonormal coordinate system $\mathcal{R}=\{O, B\}$; the matrix associated to f has the form:

$$
M_{f}(R)=\left(\begin{array}{cc}
\frac{1}{} & \overline{0}^{t} \\
O f(O) & A
\end{array}\right)
$$

where $A=M_{B}(\bar{f})$ is an orthogonal matrix; this is, $A^{-1}=A^{t}$. Therefore, $\operatorname{det} A= \pm 1$.
If $\operatorname{det} A=1$ we say that the isometry is a direct isometry. If $\operatorname{det} A=-1$ we say that the isometry is an indirect isometry.
4.1.1 Isometries in the affine euclidean plane

Let f be an isometry of an euclidean affine space \mathbb{E} of dimension 2 on itself. Let $\mathcal{R}=\left\{O, B=\left(\bar{e}_{1}, \bar{e}_{2}\right)\right\}$ be an orthonotmal coordinate system in \mathbb{E}. The matrix associated to f with respect to \mathcal{R} is

$$
M_{f}(R)=\left(\begin{array}{cc}
1 & \overline{0}^{t} \\
\bar{b} & A
\end{array}\right) \text { with } A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \text { and } \bar{b}=\binom{b_{1}}{b_{2}} .
$$

The charasteristic polynomial of A is $\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$.

Subspace of fixed points

The equation of the subspace of fixed points of f is

$$
(A-I) X+\bar{b}=\overline{0} .
$$

Therefore, f has fixed points if the former equation has a solution.
If $\operatorname{rank}(A-I)=2$ (then also $\operatorname{rank}(A-I \mid \bar{b})=2$) then f has only one fixed point.

If $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=1$ then f has a line of fixed points.
If $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=0$ then f is the identity transformation.

1. If $\operatorname{det} A=1$, the isometry f is direct and $A \in S O(2)$ (matrices of order 2 , orthogonal and with determinant 1). There exists an angle θ such that

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Notice that, in this case, $\operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+1$ and $\operatorname{tr}(A)=2 \cos \theta$.
a) If $\cos \theta=\frac{1}{2} \operatorname{tr}(A) \neq 1$, then $\lambda=1$ is not an eigenvalue of the matrix A and, therefore $\operatorname{rank}(A-I)=2$ and f has only one fixed point that we denote by P. In this case, f is a rotation of angle θ and with center in the fixed point P. In the coordinate system $\mathcal{R}^{\prime}=\left\{P, B=\left(\bar{e}_{1}, \bar{e}_{2}\right)\right\}$ the matrix associated to f is

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

If $\cos \theta=\frac{1}{2} \operatorname{tr}(A)=-1$ then $\theta=180^{\circ}$ and f is a central symmetry with center in the fixed point P.
b) If $\cos \theta=\frac{1}{2} \operatorname{tr}(A)=1$, then

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and f is a translation of vector \bar{b}.

1) $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=0$ then f is the identity transformation.
2) $\operatorname{rank}(A-I) \neq \operatorname{rank}(A-I \mid \bar{b})$ then f is the translation of vector \bar{b}.
2. If $\operatorname{det}(A)=-1$ the isometry f is indirect and $A \in O(2)$ (orthogonal matrices of order 2). The eigenvalues of A are $1,-1$. If we take \bar{u}_{1} eigenvector associated to 1 and \bar{u}_{2} eigenvector associated to -1 , we have that in the basis $B^{\prime}=\left\{\bar{u}_{1}, \bar{u}_{2}\right\}$ the matrix associated to \bar{f} (which we keep on calling A) is

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

We have $\operatorname{rank}(A-I)=1$.
a) If $\operatorname{rank}(A-I \mid \bar{b})=1$ then there exists a line of fixed points of f. Let P be a point of this line (this is, a fixed point of f), in the orthonormal coordinate system $\mathcal{R}^{\prime}=\left\{P,\left\{\frac{1}{\left\|\bar{u}_{1}\right\|} \bar{u}_{1}, \frac{1}{\left\|\bar{u}_{2}\right\|} \bar{u}_{2}\right\}\right\}$ the matrix associated to f is:

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$ and f is an axial symmetry. The line of fixed points $r \equiv P+\left\langle\bar{u}_{1}\right\rangle$ is called axis of the symmetry.

b) If $\operatorname{rank}(A-I \mid \bar{b})=2$ then f has no fixed points. In the orthonormal coordinate system $\mathcal{R}^{\prime}=\left\{O,\left\{\frac{1}{\left\|\bar{u}_{1}\right\|} \bar{u}_{1}, \frac{1}{\left\|\bar{u}_{2}\right\|} \bar{u}_{2}\right\}\right\}$ the matrix associated to f is:

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
c_{1} & 1 & 0 \\
c_{2} & 0 & -1
\end{array}\right) .
$$

Let us study whether in this case there exists any invariant line. We know that $V(1)=\left\langle\bar{u}_{1}\right\rangle$ and $V(-1)=\left\langle\bar{u}_{2}\right\rangle$. Let us compute $\overline{X f(X)}$. Let $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ be the coordinates in the coordinate system \mathcal{R}^{\prime} of an arbitrary point X, we have:

$$
\begin{aligned}
\overline{X f(X)} & =f(X)-X=\left(x_{1}^{\prime}+c_{1},-x_{2}^{\prime}+c_{2}\right)-\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \\
& =\left(c_{1},-2 x_{2}^{\prime}+c_{2}\right)
\end{aligned}
$$

If $-2 x_{2}^{\prime}+c_{2}=0$ then $\overline{X f(X)} \in\left\langle\bar{u}_{1}\right\rangle$. Therefore, the line with equation $-2 x_{2}^{\prime}+c_{2}=0$ is an invariant line of f. If we take a point P as the origin of the coordinate system in the above mentioned line (then the coordinates of P have the form ($p, \frac{c_{2}}{2}$)), we have that in the coordinate system $\mathcal{R}^{\prime}=\left\{P,\left\{\frac{1}{\left\|\bar{u}_{1}\right\|} \bar{u}_{1}, \frac{1}{\left\|\bar{u}_{2}\right\|} \bar{u}_{2}\right\}\right\}$ the matrix of f is:

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
p & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Thi is the composition of an axial symmetry, with axis the invariant line $P+\left\langle\bar{u}_{1}\right\rangle$, and a translation parallel with the axis (with vector $(p, 0)$).

Observation. Every symmetry composed with a translation can be decomposed in an unique way as a symmetry composed with a translation with the direction vector of the axis as its vector.

Table of classification

$\operatorname{det} A=1$ (then $\cos \alpha=\frac{1}{2} \operatorname{tr} A$)

	$\operatorname{rg}(A-I)$	$\operatorname{rg}(A-I \mid \bar{b})$	Classification
$\cos \alpha=1$	0	$0(\bar{b}=\overline{0})$	Identity
$\cos \alpha=1$	0	$1(\bar{b} \neq \overline{0})$	Translation
$\cos \alpha \neq 1$	2	2	Rotation

$\operatorname{det} A=-1$		
$r g(A-I)$	$\operatorname{rg}(A-I \mid \bar{b})$	Classification
1	1	Symmetry with respect to line of fixed points
1	2	Translational symmetry

Example

Classify the isometry $f\left(x_{1}, x_{2}\right)=\left(1-x_{2}, 3-x_{1}\right)$.
Solution
The matrix associated with this isometry is

$$
M_{f}(\mathcal{R})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
3 & -1 & 0
\end{array}\right) \text {, we denote by } A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \text { and } \bar{b}=\binom{1}{3} .
$$

As $\operatorname{det}(A)=-1$ the isometry is indirect, has eigenvalues $\lambda=-1,1$ and, in this case, $\bar{e}_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is an unitary eigenvector associated to the eigenvalue $\lambda=-1$ and $\bar{e}_{2}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is an unit eigenvector associated with the eigenvalue $\lambda=1$. Let us see if f has fixed points. As

$$
\operatorname{rank}(A-I)=1 \text { and } \operatorname{rank}(A-I \mid \bar{b})=2
$$

the isometry f has no fixed points.

It is an isometry composed with a translation. Let us check if it has any invariant line, and let us calculate it

$$
\begin{aligned}
\overline{X f(X)} & =f(X)-X=\left(1-x_{2}, 3-x_{1}\right)-\left(x_{1}, x_{2}\right) \\
& =\left(1-x_{1}-x_{2}, 3-x_{1}-x_{2}\right) \in V(-1) \text { or } V(1)
\end{aligned}
$$

Then, $\overline{X f(X)} \in V(-1)$ if and only if $\overline{X f(X)}$ and \bar{e}_{1} are proportional; this is, if

$$
\begin{aligned}
& 1-x_{1}-x_{2}=t \\
& 3-x_{1}-x_{2}=t
\end{aligned}
$$

Subtracting both equations we obtain $2=0$ which is impossible. And $\overline{X f(X)} \in V(1)$ if and only if $\overline{X f(X)}$ and \bar{e}_{2} are proportional; this is, if

$$
\begin{aligned}
& 1-x_{1}-x_{2}=-t \\
& 3-x_{1}-x_{2}=t
\end{aligned}
$$

Subtracting both equations we obtain $t=1$ and therefore, $\overline{X f(X)} \in V(1)$ if and only if

$$
x_{1}+x_{2}=2
$$

which is the equation of the invariant line.
Therefore, f is a translational symmetry; this is, a symmetry s with the invariant line as axis, composed with a translation with vector proportional to the eigenvector associated to the eigenvalue $\lambda=1$ (direction vector of the invariant line). The matrix of the symmetry is

$$
M_{s}(\mathcal{R})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 0 & -1 \\
b & -1 & 0
\end{array}\right)
$$

where a, b let us fix any point of the line $x_{1}+x_{2}=2$. For example, let us impose it fixes the point $(1,1)$:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 0 & -1 \\
b & -1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \Longrightarrow\left\{\begin{array}{l}
a=2 \\
b=2
\end{array}\right.
$$

Let us compute which is the translation vector:

$$
\begin{aligned}
M_{f}(\mathcal{R}) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
3 & -1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
v_{1} & 1 & 0 \\
v_{2} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & -1 \\
2 & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
v_{1}+2 & 0 & -1 \\
v_{2}+2 & -1 & 0
\end{array}\right)
\end{aligned}
$$

then $v_{1}=-1$ and $v_{2}=1$.

Example

Obtain the analytic expression of the isometry of the plane which is a composition of the symmetry with the line $x_{1}+x_{2}=1$ as axis and the translation with vector $\bar{v}=(1,2)$. Decompose the obtained isometry as composition of a symmetry and a translation with vector parallel with the symmetry axis.

Solution

The vector line associated to the symmetry axis has cartesian equation $x_{1}+x_{2}=0$.
Let us consider the coordinate system $\mathcal{R}^{\prime}=\left\{P,\left\{\bar{u}_{1}, \bar{u}_{2}\right\}\right\}$ where P is a point of the symmetry axis, for example, $P(1,0)$, vector \bar{u}_{1} is an unitary vector in the line $x_{1}+x_{2}=0$; for example $\bar{u}_{1}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and vector \bar{u}_{2} is an unitary vector and orthogonal to \bar{u}_{1}; this is, $\bar{u}_{2}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

In the mentioned coordinate system the matrix associated to the symmetry S with axis $x_{1}+x_{2}=1$ is

$$
M_{S}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Therefore,

$$
\begin{aligned}
M_{S}(\mathcal{R}) & =M\left(\mathcal{R}^{\prime} \mathcal{R}\right) M_{S}\left(\mathcal{R}^{\prime}\right) M\left(\mathcal{R} \mathcal{R}^{\prime}\right) \\
& =M\left(\mathcal{R}^{\prime} \mathcal{R}\right) M_{S}\left(\mathcal{R}^{\prime}\right)\left(M\left(\mathcal{R}^{\prime} \mathcal{R}\right)\right)^{-1} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

The translation T with vector $\bar{v}=(1,2)$ has associated matrix:

$$
M_{T}(\mathcal{R})=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) .
$$

Thus, the matrix associated to the isometry we are looking for, is

$$
\begin{aligned}
M_{T \circ S}(\mathcal{R}) & =M_{T}(\mathcal{R}) M_{S}(\mathcal{R})=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & -1 \\
3 & -1 & 0
\end{array}\right) .
\end{aligned}
$$

And

$$
(T \circ S)\left(x_{1}, x_{2}\right)=\left(2-x_{2}, 3-x_{1}\right) .
$$

We are going to decompose the obtained isometry as a composition of a symmetry and a translation t_{2} with vector parallel with the symmetry axis. Let us decompose the vector $\bar{v}=(1,2)$ as an addition of a vector with direction parallel with the symmetry axis s and a vector orthogonal to this forementioned vector:

$$
\bar{v}=(1,2)=a(1,-1)+b(1,1)
$$

from where $a=-\frac{1}{2}$ and $b=\frac{3}{2}$. Therefore, let us take the translation t_{2} with vector $\bar{v}_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right)$. Let us calculate the symmetry s_{2} :

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & -1 \\
3 & -1 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
\frac{1}{2} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
c & 0 & -1 \\
d & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
c-\frac{1}{2} & 0 & -1 \\
d+\frac{1}{2} & -1 & 0
\end{array}\right)
\end{aligned}
$$

from where, $c=\frac{5}{2}$ and $d=\frac{5}{2}$. Then,

$$
M_{s_{2}}(\mathcal{R})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{5}{2} & 0 & -1 \\
\frac{5}{2} & -1 & 0
\end{array}\right) .
$$

Now let us compute the line of fixed points of the symmetry s_{2}. We have:

$$
\begin{aligned}
\overrightarrow{X s_{2}(X)} & =\left(\frac{5}{2}-y, \frac{5}{2}-x\right)-(x, y) \\
& =\left(\frac{5}{2}-x-y, \frac{5}{2}-x-y\right) \\
& =\left(\frac{5}{2}-x-y\right)(1,1)
\end{aligned}
$$

Therefore, the line $5=2 x+2 y$ is the line of fixed points of the symmetry s_{2} (is the symmetry axis).

4.2 Isometries in the tridimensional euclidean affine space

Let f be an isometry of an euclidean affine space \mathbb{E} of dimension 3 on itself. Let $\mathcal{R}=\left\{O, B=\left(\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right)\right\}$ be an orthonormal coordinate system in \mathbb{E}. The matrix associated to f with respect to \mathcal{R} is

$$
M_{f}(\mathcal{R})=\left(\begin{array}{cc}
1 & \bar{o}^{t} \\
\bar{b} & A
\end{array}\right) \text { with } A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \text { and } \bar{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=-\lambda^{3}+\operatorname{tr}_{2}(A) \lambda^{2}-\operatorname{tr}(A) \lambda+$ $\operatorname{det}(A)$, where

$$
\operatorname{tr}_{2}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| .
$$

Subspace of fixed points
The equation of the subspace of fixed points of f is

$$
(A-I) X+\bar{b}=\overline{0} .
$$

Therefore, f has fixed points if the above mentioned equation has any solution.
If $\operatorname{rank}(A-I)=3$ (then also $\operatorname{rank}(A-I \mid \bar{b})=3$) then f has only one fixed point.

If $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=2$ then f has a line of fixed points.
If $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=1$ then f has a plane of fixed points.
If $\operatorname{rank}(A-I)=\operatorname{rank}(A-I \mid \bar{b})=0$ then f is the identity transformation.

1. If $\operatorname{det} A=1$, the isometry f is direct and $A \in S O(3)$ (orthogonal matrices of order 3 and with determinant 1) and, in a convenient orthonormal basis $B^{\prime}=\left\{\overline{u_{1}}, \overline{u_{2}}, \overline{u_{3}}\right\}$ the matrix associated to \bar{f} is written:

$$
M_{\bar{f}}\left(B^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

Notice that, in this case, $\operatorname{tr}(A)=1+2 \cos \theta$.
a) If $\cos \theta=1$, then $\operatorname{rank}(A-I)=0$, then we can encounter two situations:

1) $\operatorname{rank}(A-I \mid \bar{b})=0$ and, in this case,

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and f is the identity transformation.
2) $\operatorname{rank}(A-I \mid \bar{b})=1$ and, in this case, there are no fixed points and f is a translation with vector \bar{b}. The matrix associated with f in this case is:

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
b_{1} & 1 & 0 & 0 \\
b_{2} & 0 & 1 & 0 \\
b_{3} & 0 & 0 & 1
\end{array}\right) .
$$

b) If $|\cos \theta| \neq 1$, then $\operatorname{rank}(A-I)=2$ and we can encounter two situations:

1) $\operatorname{rank}(A-I \mid \bar{b})=2$ and, in this case, there is a line of fixed points $r \equiv Q+\left\langle\bar{w}_{1}\right\rangle$, where \bar{w}_{1} is an eigenvector associated with the eigenvalue $\lambda=1$. In the coordinate system

$$
\mathcal{R}^{\prime}=\left\{Q,\left\{\bar{u}_{1}=\frac{1}{\left\|\bar{w}_{1}\right\|} \bar{w}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}\right\}
$$

the matrix associated to f is

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

Thus f is a rotation of angle θ and axis the line r of fixed points. In the particular case where $\cos \theta=-1$, we would have an axial symmetry with the line r of fixed points as axis.
2) $\operatorname{rank}(A-I \mid \bar{b})=3$ and, in this case, there are no fixed points. The matrix associated with f can be written as follows:

$$
\left.\begin{array}{rl}
M_{f}\left(\mathcal{R}^{\prime}\right) & =\left(\begin{array}{l}
1 \\
\bar{b}
\end{array} \overline{0}^{t}\right. \\
& A
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
b_{1} & 1 & 0 & 0 \\
b_{2} & 0 & 1 & 0 \\
b_{3} & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

and f is an helical movement, this is, a rotation of angle θ and axis the invariant line f, with associated vector subspace $V(1)$, composed with a translation parallel with the fore mentioned line (with vector $\bar{u}=\overline{X f(X)}$, where $X \in r$).
2. If $\operatorname{det} A=-1$, the isometry f is indirect and $A \in O(3)$ (orthogonal matrices of order 3).
In a convenient orthonormal basis $B^{\prime}=\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$,the unitary vector \bar{u}_{1} is the eigenvector associated with $\lambda=-1$, the matrix associated with \bar{f} is written as follows:

$$
M_{\bar{f}}\left(B^{\prime}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

Notice that, in this case, $\operatorname{tr}(A)=-1+2 \cos \theta$.
a) If $\cos \theta=1$ then $\operatorname{rank}(A-I)=1$.

1) If $\operatorname{rank}(A-I \mid \bar{b})=1$ then there exists a plane of fixed points $\pi \equiv$ $P+\left\langle\bar{v}_{1}, \bar{v}_{2}\right\rangle$. In the coordinate system

$$
\mathcal{R}^{\prime}=\left\{Q,\left\{\bar{u}_{1}, \bar{u}_{2}=\frac{1}{\left\|\bar{v}_{1}\right\|} \bar{v}_{1}, \bar{u}_{3}=\frac{1}{\left\|\bar{v}_{2}\right\|} \bar{v}_{2}\right\}\right\}
$$

the matrix associated to f is written as follows

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and f is a specular symmetry (or reflection) with respect to the plane of fixed points.
2) If $\operatorname{rank}(A-I \mid \bar{b})=2$ then there are no fixed points. The matrix associated with f can be written as follows:

$$
\begin{aligned}
M_{f}\left(\mathcal{R}^{\prime}\right) & =\left(\begin{array}{cc}
1 & \overline{0}^{t} \\
\bar{b} & A
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
b_{1} & 1 & 0 & 0 \\
b_{2} & 0 & 1 & 0 \\
b_{3} & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and f is a symmetry composed with a translation with vector parallel with the invariant plane $\left(\bar{v}=\left(0, c_{2}, c_{3}\right)\right)$.
b) If $\cos \theta \neq 1$ then \bar{f} does not have the eigenvalue $\lambda=1$ and there is an unique fixed point Q. In the orthonormal coordinate system $\mathcal{R}^{\prime}=\left\{Q,\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}\right\}$ the matrix associated with f is written:

$$
M_{f}\left(\mathcal{R}^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & \sin \theta & \cos \theta
\end{array}\right)
$$

and f is a symmetry (with respect to the plane $Q+\left\langle\bar{u}_{2}, \bar{u}_{3}\right\rangle$) composed with a rotation of angle θ and axis $Q+\left\langle\bar{u}_{1}\right\rangle$.
In the particular case where $\cos \theta=-1$, then f is a central symmetry with the only fixed point Q as the center.

Table of classification

$\begin{gathered} \operatorname{det} A=1 \\ \cos (\alpha)=\frac{1}{2}(\operatorname{tr} A-1) \end{gathered}$		
$r g(A-I)$	$r g(\bar{b} \mid A-I)$	Classification
0	$0(\bar{b}=\overline{0})$	Identity
0	$1(\bar{b} \neq \overline{0})$	Translation
2	2	Rotation of angle α
2	3	Helical movement

$\begin{gathered} \operatorname{det} A=-1 \\ \cos (\alpha)=\frac{1}{2}(\operatorname{tr} A+1) \end{gathered}$		
$r g(A-I)$	$r g(\bar{b} \mid A-I)$	Classification
1	1	Symmetry
1	2	Translational symmetry
3	3	Composition of a rotation and a symmetry

