CHAPTER III: CONICS AND QUADRICS

I freely confess that I never had a taste for study or research either in physics or geometry except in so far as they could serve as a means of arriving at some sort of knowledge of the proximate causes...for the good and convenience of life, in maintaining health, in the practice of some art...having observed that a good part of the arts is based on geometry, among others the cutting of stone in architecture, that of sundials, and that of perspective in particular.

1. INTRODUCTION TO THE PROJECTIVE SPACE

1.1 Definitions

Let V_{n+1} be an $(n+1)$-dimensional vector space. The projective space of dimension n over V_{n+1} is the set of all vector lines of V_{n+1}. It is denoted by

$$
\mathbb{P}_{n}\left(V_{n+1}\right)=\left\{\langle v\rangle \mid v \in V_{n+1}-\{\overline{0}\}\right\} .
$$

Every vector in V_{n+1} determines a projective point.
Examples
We call the set of vector lines of \mathbb{R}^{3} real projective plane and we denote it by \mathbb{P}_{2}; this is

$$
\mathbb{P}_{2}=\mathbb{P}\left(\mathbb{R}^{3}\right)=\left\{<\bar{v}>\mid \bar{v} \in \mathbb{R}^{3}-\{(0,0,0)\}\right\} .
$$

We call the set of vector lines of \mathbb{R}^{4} real projective space and denote it by \mathbb{P}_{3}; this is

$$
\mathbb{P}_{3}=\mathbb{P}\left(\mathbb{R}^{4}\right)=\left\{<\bar{v}>\mid \bar{v} \in \mathbb{R}^{4}-\{(0,0,0,0)\}\right\} .
$$

1.2 Homogeneous coordinates

Let $\mathbb{P}_{n}\left(V_{n+1}\right)$ be a projective space. We say that a family of points $\left\{<\bar{v}_{1}>\right.$ $\left., \ldots,<\bar{v}_{r}>\right\}$ of $\mathbb{P}_{n}\left(V_{n+1}\right)$ generate the projective space $\mathbb{P}_{n}\left(V_{n+1}\right)$ if the family of vectors $\left\{\bar{v}_{1}, \ldots, \bar{v}_{r}\right\}$ generates the vector space V_{n+1}.

Let $\mathbb{P}_{n}\left(V_{n+1}\right)$ be a projective space. We say that the points $<\bar{v}_{1}>, \ldots,<\bar{v}_{r}>$ of $\mathbb{P}_{n}\left(V_{n+1}\right)$ are projectively independent if the vectors $\bar{v}_{1}, \ldots, \bar{v}_{r}$ of V_{n+1} are linearly independent.

Example

Let us consider $\mathbb{P}_{2}=\mathbb{P}_{2}\left(\mathbb{R}^{3}\right)$, then an independent generating family of points of $\mathbb{P}_{2}=\mathbb{P}_{2}\left(\mathbb{R}^{3}\right)$ is formed by three points $X_{1}=<\bar{v}_{1}>, X_{2}=<\bar{v}_{2}>$ and $X_{3}=<\bar{v}_{3}>$ so that the three vectors \bar{v}_{1}, \bar{v}_{2} and \bar{v}_{3} are linearly independent. A point $X=<\bar{w}>\in \mathbb{P}_{2}$ can be expressed as follows:

$$
\bar{w}=\alpha_{1} \bar{v}_{1}+\alpha_{2} \bar{v}_{2}+\alpha_{3} \bar{v}_{3},
$$

and the coordinates of X would be $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

If we choose the representative $\lambda \bar{w}, \lambda \neq 0$ of X, as $X=<\lambda \bar{w}>\in \mathbb{P}_{2}$ then

$$
\lambda \bar{w}=\lambda \alpha_{1} \bar{v}_{1}+\lambda \alpha_{2} \bar{v}_{2}+\lambda \alpha_{3} \bar{v}_{3},
$$

and the coordinates of X would be $\left(\lambda \alpha_{1}, \lambda \alpha_{2}, \lambda \alpha_{3}\right)$.
We call the class $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$ homogeneous coordinates of the projective point X; this is,

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]=\left\{\left(\lambda \alpha_{1}, \lambda \alpha_{2}, \lambda \alpha_{3}\right), \text { with } \lambda \neq 0\right\}
$$

1.3 Relationship between affine space and projective space

Let \mathbb{A}_{n} be an affine space with associated vector space \mathbb{R}^{n}.
Let us consider a coordinate system $\mathcal{R}=\{O, B\}$ of \mathbb{A}_{n}.
Given $X \in \mathbb{A}_{n}$ with cartesian coordinates $\left(x_{1}, \ldots, x_{n}\right)$ then

$$
\left(\lambda, \lambda x_{1}, \ldots, \lambda x_{n}\right) \text { with } \lambda \neq 0
$$

is a set of homogeneous coordinates of X. We choose $\left(1, x_{1}, \ldots, x_{n}\right)$ as representative of the homogeneous coordinates of X.

Definition Given an affine line $P+\langle v\rangle$ were $P \in \mathbb{A}_{n}$ and $v \in \mathbb{R}^{n}$ with coordinates $\left(v_{1}, \ldots, v_{n}\right)$ in the basis B then we call $\left(0, v_{1}, \ldots, v_{n}\right)$ the point at infinity of the affine line.

Definition. Let \mathbb{A}_{n} be an affine space with associated vector space \mathbb{R}^{n} with coordinate system $\mathcal{R}=\{O, B\}$. We call the set formed by all the points of \mathbb{A}_{n} and the points at infinity of \mathbb{A}_{n} projectivized affine space and denote it by $\overline{\mathbb{A}}_{n}$; this is

$$
\overline{\mathbb{A}}_{n}=\mathbb{A}_{n} \cup\left\{\left(0, x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}
$$

We identify $\overline{\mathbb{A}}_{n}$ with $\mathbb{P}_{n}\left(\mathbb{R}^{n+1}\right)$ in the following way:

$$
\begin{aligned}
& \overline{\mathbb{A}}_{n} \longleftrightarrow \mathbb{P}_{n}\left(\mathbb{R}^{n+1}\right) \\
&\left(1, \frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \longrightarrow\left\langle\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right\rangle, \quad\left(x_{0} \neq 0\right) \text { proper points of } \mathbb{P}\left(\mathbb{R}^{n+1}\right) \\
&\left(0, x_{1}, \ldots, x_{n}\right) \longrightarrow\left\langle\left(0, x_{1}, \ldots, x_{n}\right)\right\rangle, \quad\left(x_{0}=0\right) \text { improper points of } \mathbb{P}\left(\mathbb{R}^{n+1}\right)
\end{aligned}
$$

1.4 Equations of the lines of the projective plane

Let \mathbb{P}_{2} be the real projective plane.
Given two independent points $P, Q \in \mathbb{P}_{2}$, we have $P=<\bar{v}>$ and $Q=<\bar{w}>$ with $\bar{v}, \bar{w} \in \mathbb{R}^{3}$ linearly independent vectors, the line r that contains P and Q is

$$
r=\{<\lambda \bar{v}+\mu \bar{w}>\mid(\lambda, \mu) \neq(0,0)\}
$$

If the points P and Q have the following homogeneous coordinates:

$$
P=\left[p_{0}, p_{1}, p_{2}\right], \quad Q=\left[q_{0}, q_{1}, q_{2}\right]
$$

then a point $X \in r$ if and only if its coordinates $\left[x_{0}, x_{1}, x_{2}\right]$ verify the following equations

$$
\left\{\begin{array}{l}
\alpha x_{0}=\lambda p_{0}+\mu q_{0} \\
\alpha x_{1}=\lambda p_{1}+\mu q_{1} \\
\alpha x_{2}=\lambda p_{2}+\mu q_{2}
\end{array},(\alpha, \lambda, \mu) \neq(0,0,0),\right.
$$

which are called parametric equations of the line r of the projective plane \mathbb{P}_{2}.
Equivalently the point $X=\left[x_{0}, x_{1}, x_{2}\right] \in r$ if and only if

$$
a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0
$$

which is the cartesian equation of the line that is obtained when we demand the following determinant to be zero:

$$
0=\left|\begin{array}{lll}
x_{0} & p_{0} & q_{0} \\
x_{1} & p_{1} & q_{1} \\
x_{2} & p_{2} & q_{2}
\end{array}\right|
$$

1.4.1 Relationship between the lines of the real affine plane and the projective plane.

Let \mathbb{A}_{2} be the affine plane with coordinate system $\mathcal{R}=\{O, B\}$ and let us consider the line r of the affine plane \mathbb{A}_{2} with equation $a_{0}+a_{1} x_{1}+a_{2} x_{2}=0$.

Let $P=\left(p_{1}, p_{2}\right)$ and $Q=\left(q_{1}, q_{2}\right)$ be two points of the line, then two points of the projective plane $\left[1, p_{1}, p_{2}\right]$, $\left[1, q_{1}, q_{2}\right]$ determine a line r of the projective plane \mathbb{P}_{2} with equation $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$, which is called line of \mathbb{P}_{2} associated to the affine line r.

Reciprocally, given a line r of the projective plane \mathbb{P}_{2} with equation $a_{0} x_{0}+$ $a_{1} x_{1}+a_{2} x_{2}=0$. If $p_{0} \neq 0$, then the point of the affine plane $\left(\frac{p_{1}}{p_{0}}, \frac{p_{2}}{p_{0}}\right)$ is in the line r of the affine plane \mathbb{A}_{2} with equation:

$$
a_{0}+a_{1} x_{1}+a_{2} x_{2}=0
$$

Definition. The line that joins two proper points of \mathbb{P}_{2} is called a proper line of \mathbb{P}_{2}.

Every proper line $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$, determines a point at infinity $\left[0,-a_{2}, a_{1}\right]$ where $\left(-a_{2}, a_{1}\right)$ is the direction vector of the line r of the affine plane \mathbb{A}_{2} with equation $a_{0}+a_{1} x_{1}+a_{2} x_{2}=0$.

Definition. The line that joins two points at infinity of \mathbb{P}_{2} is called infinity or improper line of \mathbb{P}_{2} and has equation $x_{0}=0$.
1.5 Equations of projective subspaces of \mathbb{P}_{3}

Let \mathbb{P}_{3} be the real tridimensional projective space.
1.5.1 Lines in \mathbb{P}_{3}

Let P, Q be two independent points of \mathbb{P}_{3}. Therefore, $P=<\bar{v}>$ and $Q=<$ $\bar{w}>$ with $\bar{v}, \bar{w} \in \mathbb{R}^{4}$ linearly independent vectors. The line r that contains P and Q is

$$
r=\{<\lambda \bar{v}+\mu \bar{w}>\mid(\lambda, \mu) \neq(0,0)\}
$$

If the points P and Q have the following homogeneous coordinates:

$$
P=\left[p_{0}, p_{1}, p_{2}, p_{3}\right], \quad Q=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]
$$

then a point $X=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in r$ if and only if its coordinates verify the following equations

$$
\left\{\begin{array}{l}
\alpha x_{0}=\lambda p_{0}+\mu q_{0} \\
\alpha x_{1}=\lambda p_{1}+\mu q_{1} \\
\alpha x_{2}=\lambda p_{2}+\mu q_{2} \\
\alpha x_{3}=\lambda p_{3}+\mu q_{3}
\end{array},(\alpha, \lambda, \mu) \neq(0,0,0)\right.
$$

which are called parametric equations of the line r of the projective space \mathbb{P}_{3}.

Equivalently the point $X=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ belongs to the line r of the projective space \mathbb{P}_{3} if and only if

$$
\operatorname{rank}\left(\begin{array}{ccc}
x_{0} & p_{0} & q_{0} \\
x_{1} & p_{1} & q_{1} \\
x_{2} & p_{2} & q_{2} \\
x_{3} & p_{3} & q_{3}
\end{array}\right)=2
$$

from where we obtain the two cartesian equations of the line.

Definition. The line that joins two proper points of \mathbb{P}_{3} is called a proper line of \mathbb{P}_{3}. Its equations are the homogeneous equations of an affine line.

Definition. The line that joins two improper points of \mathbb{P}_{3} is called improper or infinity line of \mathbb{P}_{3}.

Observation. In \mathbb{P}_{3} there is an infinite number of improper lines.
1.5.2 Planes in \mathbb{P}_{3}

Given three independent points $P=<\bar{v}>, Q=<\bar{w}>$ and $R=<\bar{u}>$ of \mathbb{P}_{3}, the plane that contains P, Q and R is

$$
\pi=\{<\lambda \bar{v}+\mu \bar{w}+\gamma \bar{u}>\mid(\lambda, \mu, \gamma) \neq(0,0,0)\} .
$$

If the points P, Q and R have the following homogeneous coordinates:

$$
\begin{aligned}
& P=\left[p_{0}, p_{1}, p_{2}, p_{3}\right] \\
& Q=\left[q_{0}, q_{1}, q_{2}, q_{3}\right] \\
& R=\left[r_{0}, r_{1}, r_{2}, r_{3}\right]
\end{aligned}
$$

then a point $X=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ belongs to the plane π of the projective space \mathbb{P}_{3} if and only if its coordinates verify the following equations

$$
\left\{\begin{array}{l}
\alpha x_{0}=\lambda p_{0}+\mu q_{0}+\gamma r_{0} \\
\alpha x_{1}=\lambda p_{1}+\mu q_{1}+\gamma r_{1} \\
\alpha x_{2}=\lambda p_{2}+\mu q_{2}+\gamma r_{2} \\
\alpha x_{3}=\lambda p_{3}+\mu q_{3}+\gamma r_{3}
\end{array},(\alpha, \lambda, \mu, \gamma) \neq(0,0,0,0)\right.
$$

which are called parametric equations of the plane π of the projective space \mathbb{P}_{3}.
Equivalently the point $X=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ is contained in the plane π of the projective space \mathbb{P}_{3} if and only if

$$
a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

which is the cartesian equation of the plane that is obtained when we force that the following determinant is to be zero:

$$
0=\left|\begin{array}{llll}
x_{0} & p_{0} & q_{0} & r_{0} \\
x_{1} & p_{1} & q_{1} & r_{1} \\
x_{2} & p_{2} & q_{2} & r_{2} \\
x_{3} & p_{3} & q_{3} & r_{3}
\end{array}\right|
$$

Observations.

Three proper points determine a proper plane of \mathbb{P}_{3}. Its equation is the homogeneous equation of an affine plane.

Three improper points determine an improper plane of \mathbb{P}_{3} which has as
cartesian equation the equation $x_{0}=0$.
Every proper plane determines a line at infinity. Every line at infinity is contained in the infinity plane $x_{0}=0$.

