Course: Common Sense Reasoning

2. Simulating Common Sense Reasoning

Martin Molina

Why is it difficult to simulate common sense reasoning?

- Simulation of reasoning about actions and effects
 - Indirect effects, low of inertia, continuous change, ...
- Simulation of non-monotonic reasoning
 - Default reasoning, ...
- Efficient use of a large amount of common sense knowledge

The frame problem

Reasoning about the things that do not change when an event occurs

```
If I move glass A then it changes the position (but glass B remains in the same position, and knife C remains in the same position, and plate D remains in the same position, and ...)
```

The qualification problem

Reasoning about qualifications, i. e. conditions that cancel the effect of an event

```
If A calls B on the phone then A will talk to B
   (unless B does not want to answer the phone,
    unless the phone is broken,
    unless the phone is a toy phone,
    unless B is dead,
    unless B does not speak the same language,
    ...)
```

The ramification problem

Representing and reasoning about indirect effects of events

```
The box A contains B, C and D. I move A from X to Y.

(B moves from X to Y,

C moves from X to Y,

D moves from X to Y)
```

Monotonic reasoning

In classical logic, the more knowledge you have, the more facts you can conclude (the addition of more knowledge does not affect to previous conclusions)

```
A day is cloudy when it rains, it is raining today
→ today is cloudy
```

A day is cloudy when it rains, it is raining today, today is Saturday → today is cloudy

6

Non-monotonic reasoning

The addition of more knowledge may change previous conclusions

```
All birds fly, X is a bird → X flies
```

All birds fly, X is a bird, X is a penguin → ???

Circumscription is a logic-based form of non-monotonic reasoning

- Some predicates are assumed to be "as false as possible"
- A circumscribed predicate is false for every object except for those for which they are known to be true
- Minimizes the semantic extension of predicates

[McCarthy, 1980]

Example: birds typically fly

```
\forall x [Bird(x) \land \neg Abnormal(x) \rightarrow Flies(x)]
```

If we circumscribe the predicate Abnormal(x) we assume that Abnormal(x) is false unless Abnormal(x) is known to be true, for example:

```
Abnormal(Penguin)
Abnormal(Ostrich)
\forall x[Dead(x) \rightarrow Abnormal(x)]
```

There are multiple approaches to simulate common sense reasoning

Logic-based models

- Default logic (Reiter, 1980)
- Situation Calculus (McCarthy, Hayes, 1969)
- Event Calculus (Kowalski, Sergot, 1986; Mueller 2006)
- Natural logic (Angeli, Manning, 2014)

Qualitative physics

- Naïve physics (Hayes, 1979)
- Qualitative reasoning (Forbus, 84; De Kleer, Brown, 1984; Kuipers, 2001)
- Micro-theories (Davis, 2008; Davis, 2010)

Domain specific methods

- Temporal reasoning (Allen, 1985; Barringer, Gabbay, 2005)
- Spatial reasoning (Cohn, et al. 1997; Mossakowski, Moratz, 2012)
- Diagramatic reasoning (Chandrasekaran, 2006)

Course "Common sense reasoning". © 2019 Martin Molina

This work is licensed under Creative Commons license CC BY-NC-SA 4.0: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Work citation in APA style:

Molina, M. (2019). Common sense reasoning [Lecture slides]. OpenCourseWare, Universidad Politécnica de Madrid. Retrieved from http://ocw.upm.es/course