Course: Common Sense Reasoning

3. Event Calculus

Martin Molina

The event calculus is a logic-based language for
reasoning about actions and their effects

e Different contributors:

— Mueller, 2014
— R.Kowalski, M.Sergot 1986
— M.Shanahan, R.Miller, 1990, ...

* Includes common sense issues:
— Default reasoning
— Indirect effects
— Continuous change
— Law of inertia
— Others (delayed effects, concurrent events, etc.)

The representation is based on
many-sorted first order logic

Sorts: Predicates:
e:event Happens(e, t) Initiates(e, f,t)
f:fluent HoldsAt(f,t) Terminates(e, f,t)
t:timepoint ReleasedAt(f,t) Releases(e,f,t)
Axioms:

Happens(e,t) A Initiates(e, f,t) = HoldsAt(f,t + 1)
Happens(e,t) A Terminates(e, f,t) = —HoldsAt(f,t + 1)
Happens(e,t) A Releases(e, f,t) = ReleasedAt(f,t + 1)

Example: Wake up

Sorts:

a:agent A

a4
< >
£5Q

Events: v

WakeUp(a) PR \'/
FallSleep(a) @

Fluents:
Awake(a)

Domain specific axioms:

Initiates(WakeUp(a), Awake(a),t)
Terminates(FallAsleep(a), Awake(a),t)

Premises:

John:agent
—HoldsAt(Awake(John), 0)
Happens(WakeUp(John), 1)

Question:
HoldsAt(Awake(John), 3) ?

Axioms:

Happens(e, t) A Initiates(e, f,t) = HoldsAt(f,t+ 1)
Initiates(WakeUp(a), Awake(a), t)
Terminates(FallAsleep(a), Awake(a),t)

Happens(WakeUp(John), 1)

—HoldsAt(Awake(John),0) HoldsAt(Awake(John), 2) HoldsAt(Awake(John), 3)
| | | |
| | | | >
0 1 2 3 Time

Event calculus uses circumscription

The “only known” event is that John wakes up at timepoint 1:

Happens(WakeUp(John), 1)

We assume that there is no other event happening, for example:

Happens(WakeUp(John),2) = FALSE

We consider Happens(e, t) as false as possible (Circumscription)

Happens(WakeUp(John), 1)

—HoldsAt(Awake(John),0) HoldsAt(Awake(John), 2) HoldsAt(Awake(John), 3)

| | | |
| | | | >

0 | 2 3 Time

Circumscription of Happens(e, t)

The “only known” event is that John wakes up at timepoint 1:

Happens(WakeUp(John), 1)
Circumscription of Happens(e, t) means logically:

Happens(e,t) & (e = WakeUp(John) At =1)

Event calculus admits different types of reasoning

State State State State

@ Action G Action e Action Action : :
251

+{aq, a,, ...,a,} = s,

* Deduction (i.e., temporal projection)

Given sy and {aq, a,, ..., a, }, determine s,

e Postdiction

Given s, and {a4, a,, ..., a, }, determine s

e Abduction (i.e., planning)

Given sy and s, determine {aq, a,, ..., a,}

“Discrete Event Calculus Reasoner”
is a program for event calculus

 The program provides a logic language and inference

[Mueller, 2014]

 The user writes the domain knowledge base

* |tis publicly free available

Commonsense Reasoning with the Discrete Event Calculus Reasoner

[Project Page] [Download] [Documentation] [Book]

Commonsense reasoning is the human ability to make inferences about properties and events in the everyday world. The
Discrete Event Calculus Reasoner is an open source program for performing d ing using the
event calculus, a comprehensive and highly usable logic-based formalism. It solves problems efficiently by converting

them into satisfiability (SAT) problems. The progr I the book Commonsense Reasoning.
Features

o Comes with 99 examples

e Comes with l_pag,c_n&ri_mnnnnl

® Supports d ibduction/planni diction, and model finding

o Allows default rcasomng about action, change, spacc and mcnlal states

o Useful for intelligent user interfaces, business systems, natural | ing, and p vision

* Helps applications understand the world, make inferences, adapt to unexpected sxlua!mns and be more flexible

¢ Released under the Common Public License v1.0

How To Use

Download the latest release, which includes the progi examples, and user's manual. Then follow the instructions in the
README file included with the release.

Take a look at how people are using the Discrete Event Calculus Reasoner.
Updates

o makerelsat_linux.sh - updated for relsat 2.02
o improved hash function for greater efficiency

System Requirements

The Discrete Event Calculus Reasoner requires Linux or Windows+Cygwin, Python, PLY, and one or more SAT solvers:
Relsat (recommended), Walksat, and MiniSat.

License

Copyright © 2005 IBM Corporation and others.
All rights reserved. This program and the panying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution, and is available at hup://www.cclipse org/legal/cpl-v10 him

saurcefarge

SOLUTION CENTERS Resources Newsletters Cloud Storage Providers Business VoIP Providers Int

Browse Enterprise Blog Artic

ome | Bro ence & Er ening / Artificial Intel ce / Discrete Event Calculus Reasone:

Dlscrete Event Calculus Reasoner

Brought to you by: etmueller

Summary Files Reviews Support Wwiki News

% Add a Review
¥ 4 Downloads
(i Last Update: 2013-03-11

[Twoot JEE 1 Lo 0

Download

Browse All Files

&

LR)
Description

The Discrete Event Calculus Reasoner is an open source program for performing automated

commonsense reasoning using the discrete event calculus, a comprehensive and highly usable formalism
for reasoning about action chanqe space, and mental states

Discrete Event Calculus Reasoner Web Site »

Categories License

Artificial Intelligence Common Public License 1.0

Some extensions for event calculus have been
proposed to improve computational efficiency

e Reactive event calculus [Chesani et al., 2010; Bragaglia et al., 2012]
* Extensions of event calculus [Cervesato et al. 2000]

e Cached event calculus [Chittaro, Montanari,1996]

* JREC: https://www.inf.unibz.it/~montali/tools.html

Domain-Dependent Model

initiates(exec(move(R,X,Y),at(R,Y), T):- Computation time: 10 ms
connected(X,Y), ’

holds_at(at(R,X),T),

:o)ld;_at(status(battery(k).L).'l’). bat(ery (rob) movetrob raomi room32) 1
> move(rob,room2,room3) 5§

Output trace

i

terminates(exec(move(R X,Y)),at(R,X),T):~
holds_at(at(R,X),T), at(rof b room1)
connected(X,Y).

L

initiates(exec(move(R,X,Y)),status (battery(R),L),T):- a((mb roomZ)
holds_at(status(battery(R),Lold),T),
Lold > 0,

Lis Lold - 1, at(rob, room3)
connected(X,Y),
holds_at(at(R,X),T).

ol

terminates(exec(move(R,X,Y)),status(battery(R),Lold),T):~
connected(X.Y),

holds_at(at(R,X),T),
holds_at(status(battery(R),Lold),T),

Lold > 0.

1- umsl

initially(at(rob,room1)).
initially(status(battery(rob), 10)).

iconnected(room1,room2).

iconnected(room2,room1).
iconnected(room2,room3).

1 (Zwoos'T W00 'qos)2A0wWw ‘
S (£WO00L'ZWO00'qos)dA0W

'
m

10

Course “Common sense reasoning”.
© 2019 Martin Molina

This work is licensed under Creative Commons license CC BY-NC-SA 4.0: @ @@@
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Work citation in APA style:

Molina, M. (2019). Common sense reasoning [Lecture slides]. OpenCourseWare,
Universidad Politécnica de Madrid. Retrieved from http://ocw.upm.es/course

