Course: Common Sense Reasoning

5. Temporal and Spatial Reasoning

Martin Molina

Qualitative temporal reasoning

- Time is a one-dimensional physical quantity with different qualitative aspects
 - Instants (today, now, tomorrow, ...)
 - Durations (long, brief, ...)
 - Temporal organization (before, during, ...)
 - Granularity hierarchies (day, month, year, ...)

There are multiple approaches for temporal reasoning

- Temporal logics
 - Modal temporal logic
 - [Tool: STeP (Stanford Temporal Prover)]
 - Moszkowski's ITL (interval logic)
- Constraint satisfaction methods
 - Allen's interval algebra

Allen's Interval Algebra uses a set of relations

James F. Allen (1950) University of Rochester

[Allen 1983]

Relation	Symbol	Symbol for Inverse	Pictoral Example
X before Y	<	>	XXX YYY
X equal Y	=	=	XXX YYY
X meets Y	m	mi	XXXYYY
X overlaps Y	0	oi	XXX YYY
X during Y	d	di	$\begin{array}{c} XXX\\ YYYYYY\end{array}$
X starts Y	S	si	XXX YYYYY
X finishes Y	f	fi	$\begin{array}{c} XXX\\ YYYYY\end{array}$

A table expresses how to compose relations

$$(A r C) = (A r 1 B) \otimes (B r 2 C)$$

B r2 C A r1 B	<	>	d	di	0	oi	m	mi	s	si	f	fi
"before" <	<	no info	< o m d s	<	<	< o m d s	<	< o m d s	<	<	< o m d s	<
"after"	no info	>	> oi mi d f	>	> oi mi d f	>	> oi mi d f	>	> oi mi d f	>	>	>
"during" d	<	>	d	no info	< o m d s	> oi mi d f	<	>	d	> oi mi d f	d	< 0 m d s
"contains" di	< o m di fi	> oi di mi si	o oi dur con =	di	o di fi	oi di si	o di fi	oi di si	di fi o	di	di si oi	di

. . .

Example

Premises:

- "During the trip, John makes a phone call" call {during, starts, finishes} trip
- "After the trip, he goes to a restaurant" trip {before, meets} restaurant

Reasoning:

Application of the composition table:call {before, meets} restaurant

Allen's algebra has multiple applications

- Planning
 - E.g. therapy planning, robot planning
- Natural language
 - E.g. story understanding
- Scenario description
 - E.g. historical sequence of events
- Others:
 - E.g. causal reasoning (diagnosis), traffic analysis, ...

Qualitative spatial reasoning

[Cohn, Renz, 2008]

- Space is a multi-dimensional physical quantity
- Spatial reasoning has multiple aspects to represent
 - Topology ("touch", "inside")
 - Orientation ("to the left", "north east")
 - Distance ("far", "near")
 - Relative positions ("above", "in front of")
 - Size ("large","tiny")
 - Shape ("oval", "convex")

Qualitative spatial reasoning differs from a quantitative approach

Qualitative approach

Reasoning about space
with qualitative relations
and values such as "near",
"large", "inside"

Quantitative approach

- Classical view based on metric measurements
- Raster and vector representations for GIS

Spatial reasoning is more complex than temporal reasoning

- Time is well defined for a qualitative approach
 - Time: duration, order
- Space is more complex due to its multi-dimensionality
 - Space: size, direction, distance, shape, topology, ...

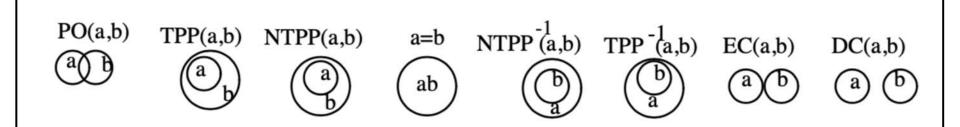
There are multiple spatial characteristics that may be considered

- Part-of relation:
 - Dividing complex objects into parts
 - Spatial granularity
- Spatial change:
 - Change of location (motion)
 - Change of shape
- Others:
 - Point (or lines) versus regions
 - Continuous versus discrete
 - Fuzzy representations

There is a controversy about the limitations of qualitative spatial representation

"The poverty conjecture" [Forbus et al., 1987]

 Space cannot be adequately represented by using only qualitative methods (because multidimensionality) There has been an increasing amount of research which tends to refute this conjecture [Cohn, 1995]


 There are proposals about combination of different spatial aspects [Renz, Nebel, 2007]

Spatial reasoning has multiple applications

- Geographic information systems
- Robot planning and navigation
- Interpret visual inputs
- Natural language understanding
- Engineering design
- Reasoning about physical systems
- Others:
 - Document structure recognition / design
 - Visual programming languages,
 - Image acquisition using figure captions
 - Etc.

Region Connected Calculus (RCC8) is a method for spatial reasoning

[Randell, Cui, Cohn, 1992]

DC disconnected

EC externally connected

EQ equal

PO partially overlapping

TPP tangential proper part

TPPi tangential proper part inverse

NTPP non-tangential proper part

NTPPi non-tangential proper part inverse

A table expresses how to compose relations

$$(A r C) = (A r 1 B) \otimes (B r 2 C)$$

8	DC	EC	РО	
DC	all	DC,EC,PO,TPP,NTPP	DC,EC,PO,TPP,NTPP	
EC	DC,EC,PO,TPPi,NTPPi	DC,EC,PO,TPP,TPPi,EQ	DC,EC,PO,TPP,NTPP	
РО	DC,EC,PO,TPPi,NTPPi	DC,EC,PO,TPPi,NTPPi	all	
TPP	DC	DC,EC	DC,EC,PO,TPP,NTPP	
				Γ

...

Reasoning using RCC8 has computational issues

[Renz, Nebel, 2007]

- RCC-8 is NP-complete
- RCC8 applies constraint satisfaction techniques
- RCC8 can be computationally tractable using:
 - limited sizes,
 - subsets of relations,
 - heuristics and search strategies

Example: Spatial relations between two properties

- Two houses are connected via a road.
- Each house is located on an own property.
- The first house possibly touches the boundary of the property.
- The second one surely does not.

What can we infer about the relation of the second property to the road?

Example: Representation and inference

```
house1 DC house2
house1 {TPP, NTPP} property1
house1 {DC, EC} property2
house1 EC road
house2 {DC, EC} property1
house2 NTPP property2
house2 EC road
property1 {DC, EC} property2
road {DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi} property1
road {DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi} property2
Using constraint satisfaction algorithms with the RCC8 compositional table:
```

road {PO, EC} property1
road {PO, TPP} property2

That is, the road either overlaps with the second property, or is even (tangential) part of it.

There are other approaches similar to RCC8

- RCC-5
 - Ignores relations about regions touching each other
- RCC-23
 - Represents convexity
- Star Calculus
 - Represents orientation
- ...

Future lines of research

Integration:

- Spatial aspects (e.g., orientation & topology)
- Qualitative-quantitative
- Space and time (spatio-temporal reasoning)

Others:

- Uncertainty
- Expressiveness/efficiency tradeoff

Course "Common sense reasoning". © 2019 Martin Molina

This work is licensed under Creative Commons license CC BY-NC-SA 4.0: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Work citation in APA style:

Molina, M. (2019). Common sense reasoning [Lecture slides]. OpenCourseWare, Universidad Politécnica de Madrid. Retrieved from http://ocw.upm.es/course