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CHAPTER III: CONICS AND QUADRICS
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2. CONICS

Intersecion of the cone x2 + y2 = z2 with planes:

z − x
3 = 1 x = 1 x− z = 1

↓ ↓ ↓
ELLIPSE HYPERBOLA PARABOLA
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Definition. Given a quadratic form ω : R3 −→ R. The projective conic defined
by ω is the set of points X ∈ P2(R3) verifying ω(X) = 0; that is,

C̄ = {X ∈ P2(R3) | ω(X) = 0}.

The affine conic defined by ω is the set of points X ∈ A2, X̃ = (1, x1, x2),
verifying ω(X̃) = 0; that is,

C = {X ∈ A2 | ω(X̃) = 0}.

We have C ⊂ C̄.
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Let A = (ai,j) be the matrix of w,

A =

 a00 a01 a02
a01 a11 a12
a02 a12 a22
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Let A = (ai,j) be the matrix of w,

A =

 a00 a01 a02
a01 a11 a12
a02 a12 a22


The equation of a conic is given by a second degree polynomial

C̄ ≡
2∑
i=0

2∑
j=0

aijxixj = 0.

Using matrix notation, the equation of a conic can be written as follows

C̄ ≡ XTAX = 0,

this is
X ∈ C̄ ⇐⇒ XTAX = 0.
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The equation of the projective conic is:

0 =

2∑
i=0

2∑
j=0

aijxixj

= a00x
2
0 + a11x

2
1 + a22x

2
2 + 2a01x0x1

+ 2a02x0x2 + 2a12x1x2.

The equation of the affine conic is obtained substituting x0 = 1:

0 = a00 + a11x
2
1 + a22x

2
2 + 2a01x1+

+ 2a02x2 + 2a12x1x2.

We say that a projective conic is degenerate if it is reducible (its equation
is a product of two polynomials of degree one), otherwise we call it non-
degenerate.
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Remember.

Definition. A quadratic form ω : R3 −→ R is a transformation such that there
exists a bilinear form f : R3 ×R3 −→ R with ω(v) = f (v, v), for every v ∈ R3.

Result. Given a quadratic form ω there exists a bilinear form f such that:

1. f is symmetric (this is, f (u, v) = f (v, u)),

2. the quadratic form associated to f is ω,

3. f is unique.

We call polar form of ω the only symmetric bilinear form of f whose quadra-
tic form is ω.

The polar form of a quadratic form is given as follows:

f (u, v) =
1

2
(ω(u + v)− ω(u)− ω(v)).

We have:
ω(X) = f (X,X).
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2.1 Singular points

Definition. Let C̄ be a projective conic determined by a quadratic form ω,
with polar form f and associated matrix A.

We say that two points P,Q ∈ P2 are conjugated if f (P,Q) = 0.

We say that a point P ∈ P2 is an autoconjugated point if ω(P ) =

f (P, P ) = 0.

We say that a point P ∈ P2 is a singular point of C̄ is it is conjugated
with any point of P2; this is, f (P,Q) = 0 for every point Q ∈ P2. This is, if

f (P,Q) = P TAQ = 0, ∀Q ∈ P2,

or, equivalently,
P TA = 0.

We say that a point P ∈ P2 is a regular point of C̄ if it is not a singular
point.
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The conic C̄ is non degenerate, regular or ordinary if it does not have a
singular point.

The conic C̄ is degenerate or singular if it has a singular point.

Examples

C̄1 ≡ x20 + 2x21 + 3x1x2 = 0 is a non-degenerate conic, because the homoge-
neous polynomial of degree 2, x20 + 2x21 + 3x1x2 = 0 is irreducible (we cannot
express it as the product of two polynomials of degree 1).

C2 ≡ x20− 4x21 = 0 is degenerate because x20− 4x21 = (x0− 2x1)(x0 + 2x1); this
is, the conic C2 decomposes in two lines that intersect.

C̄3 ≡ (x0 + 2x1 + 3x2)
2 = 0 is degenerate. The conic C3 is a double line.
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Observations: Let C̄ be a projective conic determined by a quadratic form
ω, with polar form f and associated matrix A.

1. Let Sing(C̄) be the set of singular points of C̄, we call it singular locust
of C̄; this is,

Sing(C̄) = {X ∈ P2 | f (X, Y ) = 0, for every Y ∈ P2}
= {X ∈ P2 | AX = 0}.

We have
dim(Sing(C̄)) = 2− rank(A).

2. If X ∈ P2 is a singular point, then X ∈ C̄.

Proof. We have to prove that ω(X) = 0. We have ω(X) = f (X,X) = 0

as X is conjugated with any point, in particular with itself.

3. The line determined by a singular point X and any point that belongs to
a conic Y ∈ C̄, is contained in the mentioned conic.
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Proof. As X is singular, we know that ω(X) = 0 and f (X, Y ) = 0 and as
Y belongs to the conic ω(Y ) = 0. Any point of the line determined by X
and Y has the form Z = λX + µY . We have to check that ω(Z) = 0. We
have:

ω(Z) = ω(λX + µY ) = f (λX + µY, λX + µY )

= f (λX, λX + µY ) + f (µY, λX + µY )

= f (λX, λX) + f (λX, µY ) + f (µY, λX) + f (µY, µY )

= λ2f (X,X) + 2λµf (X, Y ) + µ2f (Y, Y )

= λ2ω(X)︸ ︷︷ ︸
0

+ 2λµf (X, Y )︸ ︷︷ ︸
0

+ µ2ω(Y )︸ ︷︷ ︸
0

= 0.

4. All the points contained in the line joining two singular points are singu-
lar.
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Proof. Let Z = λX + µY be any point contained in a line formed by
two singular points X and Y . We have to check f (Z, T ) = 0, for every
T ∈ P2. We have:

f (Z, T ) = f (λX + µY, T )

= f (λX, T ) + f (µY, T )

= λf (X,T )︸ ︷︷ ︸
0

+ µf (Y, T )︸ ︷︷ ︸ = 0.

0

5. If the conic C̄ contains a singular point, then C̄ is formed by lines that
contain that point.
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2.2 Projective classification of conics

Let C̄ be a conic with associated matrix A.

We will say that the conic C̄ is empty if it has no real points.

rankA sign(A) Conic Canonical equation

3 3 Empty non-degenerate conic x20+x
2
1+x

2
2= 0

3 1 Non empty non-degenerate conic x20+x
2
1−x22= 0

2 2 a singular point x20+x
2
1= 0

2 0 pair of lines x20−x21= 0

1 1 double line (ax0+bx1+cx2)
2= 1

Notation: We name signature of A and we denote it by sign(A) to |α − β|
where α is the number of positive eigenvalues of A and β is the number of
negative eigenvalues of A.
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2.3 Polarity defined by a conic

Let C̄ be a conic with polar form f and associated matrix A. Let P ∈ P2, we
call polar variety of P with respect to the conic C̄ to the set of all conjugated
points with P ; this is,

VP = {X ∈ P2 | f (P,X) = 0}.

If P is a singular point, then VP = P2.
If P is not a singular point, then VP is a line that we denote by rP and call
polar line of P with respect to the conic C̄.

Therefore, the polar line of a non singular point P ∈ P2 is the set of points
conjugated with P .
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2.3.1 Equation of the polar line

If P is a non singular point with coordinates [p0, p1, p2] and the matrix asso-
ciated to the conic is

A =

 a00 a01 a02
a01 a11 a12
a02 a12 a22


then

rP = {X ∈ P2 | P TAX = 0},
this is,

0 = P TAX = (p0, p1, p2)

 a00 a01 a02
a01 a11 a12
a02 a12 a22

 x0
x1
x2


= (p0a00 + p1a01 + p2a02)x0 + (p0a01 + p1a11 + p2a12)x1

+ (p0a02 + p1a12 + p2a22)x2.
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2.3.2 Pole of a line with respect to a conic C̄

Definition. Given a line r of the projective plane P2, we call pole of the line r
with respect to the conic C̄ the point whose polar line is r; this is, rP = r.

If the equation of the line r is

r ≡ u0x0 + u1x1 + u2x2 = UTX = 0,

with U = (u0, u1, u2) and X = (x0, x1, x2),

then rP = r if and only if

P TAX = UTX, for every X ∈ P2
or equivalently,

P TA = UT ⇐⇒ AP = U.

If the conic C̄ is non-degenerate (therefore, detA 6= 0), then P = A−1U .
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Theorem. If the polar line of a point Q contains a point P , then the polar line
of P contains the point Q.

This is due to the conjugation condition f (P,Q) = 0, which is symmetric in
P and Q.
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2.3.3 Polarity defined by a conic

As we have seen, given a conic C̄ every non singular point P ∈ P2 is assig-
ned a line (its polar line) and reciprocally, every line r is assigned a point
(its pole).

Definition. We call polarity defined by a conic C̄ the transformation that
makes every point, which is not a singular point of C̄, correspond with its
polar line, this is,

P2�Sing(C̄) −→ Lines of P2
P 7−→ rP

Theorem of polarity defined by a regular conic.
All the polar lines of the points of a line r of P2, with respect to a regular
conic C̄, contain the same point which is the pole of r.
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2.4 Intersection between a line and a conic
Let C̄ be a projective conic with polar form f and associated matrix A and
let r be a projective line that contains the points P = [p0, p1, p2] and Q =

[q0, q1, q2].

A point X ∈ P2 is in the intersection between the conic and the line if and
only if: {

X ∈ r
X ∈ C̄ ⇐⇒

{
X = λP + µQ

ω(X) = 0
⇐⇒

{
X = λP + µQ

ω(λP + µQ) = 0

The condition ω(λP + µQ) = 0 is written:

0 = λ2ω(P ) + 2λµf (P,Q) + µ2ω(Q).

Dividing the above mentioned equation by µ2 and writing t = λ/µ we obtain
the following second degree equation:

0 = ω(P )t2 + 2f (P,Q)t + ω(Q)

with discriminant



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

∆ = f (P,Q)2 − ω(P )ω(Q).

If f (P,Q) = 0, ω(P ) = 0 and ω(Q) = 0, then P,Q ∈ C̄ and, therefore,
r ⊂ C̄. Then the conic is formed by lines.

If not, every coefficient of the second degree equation 0 = ω(P )t2 +

2f (P,Q)t+ ω(Q) is non zero, then there are two intersection points (the
two solutions of the equation).

1. If ∆ = f (P,Q)2 − ω(P )ω(Q) > 0, the line and the conic intersect in two
different proper points. We say that the line is a secant line to the conic.

2. If ∆ = f (P,Q)2 − ω(P )ω(Q) = 0, the line and the conic intersect in a
double point. We say that the line is a tangent line to the conic.

3. If ∆ = f (P,Q)2 − ω(P )ω(Q) < 0, the line and the conic intersect in two
different points at infinity. We say that the line is an exterior line to the
conic.



AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda

2.4.1 Tangent variety to a conic.

Definition. The tangent variety to a conic C̄ at a point P ∈ C̄, is the set of
points X ∈ P2 such that the line that joins P and X is tangent to the conic
C̄; this is,

TP C̄ = {X ∈ P2 | ∆ = f (P,X)2 − ω(P )ω(X) = 0}
= {X ∈ P2 | f (P,X) = 0}.

Remarks

1. If P ∈ C̄ is a regular point, then TP C̄ is a line and, in fact, is the polar
line of the point P ; this is, TP C̄ = rp.

2. If P ∈ C̄ is a singular point, then TP C̄ = P2.
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3. If P /∈ C̄, we can define the tangent variety to C̄ at P /∈ C̄ as the set
of points X ∈ P2 such that the line that joins P and X is tangent to the
conic C̄; this is,

TP C̄ = {X ∈ P2 | line XP is tangent to C̄}
= {X ∈ P2 | ∆ = f (P,X)2 − ω(P )ω(X) = 0}
= {X ∈ P2 | f (P,X)2 = ω(P )ω(X)}.

So TP C̄ is a degenerate conic that has P as singular point.


