CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

2. AFFINE TRANSFORMATIONS

2.1 Definition and first properties

Definition Let (\mathbb{A}, V, ϕ) and $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ be two real affine spaces. We will say that a map

$$
f: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}
$$

is an affine transformation if there exists a linear transformation $\bar{f}: V \longrightarrow V^{\prime}$ such that:

$$
\bar{f}(\overline{P Q})=\overline{f(P) f(Q)}, \quad \forall P, Q \in \mathbb{A} .
$$

This is equivalent to say that for every $P \in \mathbb{A}$ and every vector $\bar{u} \in V$ we have

$$
f(P+\bar{u})=f(P)+\bar{f}(\bar{u}) .
$$

We call \bar{f} the linear transformation associated to f.

Proposition Let (\mathbb{A}, V, ϕ) and $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ be two affine subspaces and let $f: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}$ be an affine transformation with associated linear transformation $\bar{f}: V \longrightarrow V^{\prime}$. The following statements hold:

1. f is injective if and only if \bar{f} is injective.
2. f is surjective if and only if \bar{f} is surjective.
3. f is bijective if and only if \bar{f} is bijective.

Proposition Let $g: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}$ and $f: \mathbb{A}^{\prime} \longrightarrow \mathbb{A}^{\prime \prime}$ be two affine transformations. The composition $f \circ g: \mathbb{A} \longrightarrow \mathbb{A}^{\prime \prime}$ is also an affine transformation and its associated linear transformation is $\overline{f \circ g}=\bar{f} \circ \bar{g}$.
Proposition Let $f, g: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}$ be two affine transformations which coincide over a point $P, f(P)=g(P)$, and which have the same associated linear transformation $\bar{f}=\bar{g}$. Then $f=g$.
Proof Every $X \in \mathbb{A}$ verifies:

$$
f(X)=f(P+\overline{P X})=f(P)+\bar{f}(\overline{P X})=g(P)+\bar{g}(\overline{P X})=g(X)
$$

2.2 Matrix associated to an affine transformation

Let (\mathbb{A}, V, ϕ) and $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ be two affine subspaces and let $f: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}$ be an affine transformation with associated linear transformation $\bar{f}: V \longrightarrow V^{\prime}$. We consider affine coordinate systems $\mathcal{R}=\{O ; B\}, B=\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ and $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}\right\}, B^{\prime}=\left\{\bar{e}_{1}^{\prime}, \ldots, \bar{e}_{m}^{\prime}\right\}$ of the spaces $\mathbb{A}, \mathbb{A}^{\prime}$ respectively. Let us assume that:

$$
\begin{gathered}
\overline{O^{\prime} f(O)}=b_{1} \bar{e}_{1}^{\prime}+\cdots+b_{m} \bar{e}_{m}^{\prime} \\
\left\{\begin{array}{c}
\bar{f}\left(\bar{e}_{1}\right)=a_{11} \bar{e}_{1}^{\prime}+\cdots+a_{m 1} \bar{e}_{m}^{\prime} \\
\vdots \\
\bar{f}\left(\bar{e}_{n}\right)=a_{1 n} \bar{e}_{1}^{\prime}+\cdots+a_{m n} \bar{e}_{m}^{\prime}
\end{array}\right.
\end{gathered}
$$

Let P be the point with coordinates $\left(x_{1}, \ldots, x_{n}\right)$ with respect to \mathcal{R} and let $\left(y_{1}, \ldots, y_{m}\right)$ be the coordinates of $f(P) \in \mathbb{A}^{\prime}$.

Then:

$$
\left(\begin{array}{c}
1 \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
b_{1} & a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m} & a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

We will write

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=\left(\begin{array}{c}
1 \\
\overline{0}^{t} \\
\bar{b} \\
M_{\bar{f}}\left(B, B^{\prime}\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
b_{1} & a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m} & a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

where \bar{b} are the coordinates of $f(O)$ in the coordinate system \mathcal{R}^{\prime} and $M_{\bar{f}}\left(B, B^{\prime}\right)$ is the matrix associated to the linear transformation \bar{f} taking in V the basis B and in V^{\prime} the basis B^{\prime}.

Example 1

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B=$ $\left.\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}\right\}$, and let $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ be an affine space with affine coordinate system $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}=\left\{\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}\right\}\right\}$. Is the transformation $f: \mathbb{A} \longrightarrow \mathbb{A}^{\prime}, f(x, y, z)=$ $(x-2 y+5, x-z+1)$ an affine transformation? Give its associated linear transformation and obtain the matrix associated to f in the coordinate systems $\mathcal{R}, \mathcal{R}^{\prime}$.

Solution.
To see if f is an affine transformation we have to check if there exists a linear transformation $\bar{f}: V \longrightarrow V^{\prime}$ such that $\overline{f(P) f(Q)}=\bar{f}(\overline{P Q})$ for every pair of points $P, Q \in \mathbb{A}$. We take $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ then

$$
\overline{P Q}=Q-P=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

and

$$
\begin{aligned}
\overline{f(P) f(Q)} & =f(Q)-f(P)=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right) \\
& =\left(x_{2}-2 y_{2}+5, x_{2}-z_{2}+1\right)-\left(x_{1}-2 y_{1}+5, x_{1}-z_{1}+1\right) \\
& =\left(\left(x_{2}-x_{1}\right)-2\left(y_{2}-y_{1}\right),\left(x_{2}-x_{1}\right)-\left(z_{2}-z_{1}\right)\right) \\
& =\bar{f}\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
\end{aligned}
$$

Therefore, f is an affine transformation and its associated linear transformation is $\bar{f}(x, y, z)=(x-2 y, x-z)$.

The coordinates of the origin O in the coordinate system \mathcal{R} are the cooordinates of the vector $\overline{O O}=(0,0,0)$ in the basis B where $\bar{e}_{1}=(1,0,0)_{B}$, $\bar{e}_{2}=(0,1,0)_{B}$ and $\bar{e}_{3}=(0,0,1)_{B}$.

Then:

$$
\begin{aligned}
& f(O)=f(0,0,0)=(5,1), \\
& \bar{f}\left(\bar{e}_{1}\right)=\bar{f}(1,0,0)=(1,1), \\
& \bar{f}\left(\bar{e}_{2}\right)=\bar{f}(0,1,0)=(-2,0), \\
& \bar{f}\left(\bar{e}_{3}\right)=\bar{f}(0,0,1)=(0,-1) .
\end{aligned}
$$

So,

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
5 & 1 & -2 & 0 \\
1 & 1 & 0 & -1
\end{array}\right) .
$$

Example 2

Let (\mathbb{A}, V, ϕ) be an affine space with affine coordinate system $\mathcal{R}=\{O ; B=$ $\left.\left\{\bar{e}_{1}, \bar{e}_{2}\right\}\right\}$, and let $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ be an affine space with affine coordinate system $\mathcal{R}^{\prime}=\left\{O^{\prime} ; B^{\prime}=\left\{\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}, \bar{e}_{3}^{\prime}\right\}\right\}$. Determine the affine transformation $f: \mathbb{A} \longrightarrow$ \mathbb{A}^{\prime}, such that

$$
\begin{aligned}
f(1,2) & =(1,2,3), \\
\bar{f}\left(\bar{e}_{1}\right) & =\bar{e}_{1}^{\prime}+4 \bar{e}_{2}^{\prime}, \\
\bar{f}\left(\bar{e}_{2}\right) & =\bar{e}_{1}^{\prime}-\bar{e}_{2}^{\prime}+\bar{e}_{3}^{\prime} .
\end{aligned}
$$

Find the matrix associated to f in the coordinate systems $\mathcal{R}, \mathcal{R}^{\prime}$.
Solution.
We know the value of f at the point $P(1,2)$ and the linear transformation associated to f, therefore we can determine f.

$$
\begin{aligned}
& \bar{f}(1,0)=(1,4,0)_{B^{\prime}}, \\
& \bar{f}(0,1)=(1,-1,1)_{B^{\prime}},
\end{aligned}
$$

To calculate the matrix associated to f we need to compute $f(O)$. We have:

$$
\begin{aligned}
f(P) \underset{f \text { is affine }}{\overline{=}} f(O)+\bar{f}(\overline{O P})= & f(O)+\bar{f}\left(1 \bar{e}_{1}+2 \bar{e}_{2}\right) \\
& =f(O)+\bar{f}\left(\bar{e}_{1}\right)+2 \bar{f}\left(\bar{e}_{2}\right) \\
= & \bar{f} \text { is linear } \\
= & f(O)+(1,4,0)+2(1,-1,1)
\end{aligned}
$$

SO

$$
\begin{aligned}
f(O) & =f(1,2)-(1,4,0)-2(1,-1,1) \\
& =(1,2,3)-(1,4,0)-2(1,-1,1) \\
& =(-2,0,1)
\end{aligned}
$$

therefore

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 1 \\
0 & 4 & -1 \\
1 & 0 & 1
\end{array}\right)
$$

As

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 1 \\
0 & 4 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
x_{1}+x_{2}-2 \\
4 x_{1}-x_{2} \\
x_{2}+1
\end{array}\right)
$$

we have:

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}-2,4 x_{1}-x_{2}, x_{2}+1\right)
$$

Example 3

Let $\left(\mathbb{R}^{2}, \mathbb{R}^{2}, \phi\right)$ be an affine space with affine coordinate system $\mathcal{R}=\{O ; B=$ $\left.\left\{\bar{e}_{1}, \bar{e}_{2}\right\}\right\}$. Determine the affine transformation $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that

$$
f\left(P_{0}\right)=f(1,1)=(7,5), f\left(P_{1}\right)=f(1,2)=(11,4), f\left(P_{2}\right)=f(2,1)=(8,8)
$$

Solution.
To determine an affine transformation $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ we need three points that form an affine coordinate system and their images.

First method

Since $\overline{P_{0} P_{1}}=(0,1)$ and $\overline{P_{0} P_{2}}=(1,0)$, then we know that

$$
\begin{aligned}
& \bar{f}\left(\bar{e}_{1}\right)=\bar{f}(1,0)=\bar{f}\left(\overline{P_{0} P_{2}}\right)=f\left(P_{2}\right)-f\left(P_{0}\right)=(1,3), \\
& \bar{f}\left(\bar{e}_{2}\right)=\bar{f}(0,1)=\bar{f}\left(\overline{P_{0} P_{1}}\right)=f\left(P_{1}\right)-f\left(P_{0}\right)=(4,-1) .
\end{aligned}
$$

Also $\overline{O P_{0}}=\bar{e}_{1}+\bar{e}_{2}$ so we have:

$$
\begin{aligned}
f\left(P_{0}\right) & =f(O)+\bar{f}\left(\overline{O P_{0}}\right)=f(O)+\bar{f}\left(\bar{e}_{1}+\bar{e}_{2}\right) \\
& =f(O)+\bar{f}\left(\bar{e}_{1}\right)+\bar{f}\left(\bar{e}_{2}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
f(O) & =f\left(P_{0}\right)-\bar{f}\left(\bar{e}_{1}\right)-\bar{f}\left(\bar{e}_{2}\right)=(7,5)-(1,3)-(4,-1) \\
& =(2,3)
\end{aligned}
$$

finally,

$$
M_{f}(\mathcal{R}, \mathcal{R})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 4 \\
3 & 3 & -1
\end{array}\right)
$$

and $f\left(x_{1}, x_{2}\right)=\left(2+x_{1}+4 x_{2}, 3+3 x_{1}-x_{2}\right)$.

Second method

The set $\mathcal{R}^{\prime}=\left\{P_{0}(1,1), P_{1}(1,2), P_{2}(2,1)\right\}$ is an affine coordinate system since $\overline{P_{0} P_{1}}=(0,1)$ and $\overline{P_{0} P_{2}}=(1,0)$ is a basis of \mathbb{R}^{2}. We have:

$$
\begin{aligned}
f\left(P_{0}\right) & =f(1,1)=(7,5) \\
\bar{f}\left(\overline{P_{0} P_{1}}\right) & =\overline{f\left(P_{0}\right) f\left(P_{1}\right)}=f\left(P_{1}\right)-f\left(P_{0}\right)=(11,4)-(7,5)=(4,-1), \\
\bar{f}\left(\overline{P_{0} P_{2}}\right) & =\overline{f\left(P_{0}\right) f\left(P_{2}\right)}=f\left(P_{2}\right)-f\left(P_{0}\right)=(8,8)-(7,5)=(1,3)
\end{aligned}
$$

Therefore,

$$
M_{f}\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
7 & 4 & 1 \\
5 & -1 & 3
\end{array}\right)
$$

To obtain $M_{f}(\mathcal{R}, \mathcal{R})$

$$
\begin{aligned}
M_{f}(\mathcal{R}, \mathcal{R}) & =M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right) M\left(\mathcal{R}, \mathcal{R}^{\prime}\right)=M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right) M\left(\mathcal{R}^{\prime}, \mathcal{R}\right)^{-1} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
7 & 4 & 1 \\
5 & -1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 4 \\
3 & 3 & -1
\end{array}\right)
\end{aligned}
$$

Therefore $f\left(x_{1}, x_{2}\right)=\left(2+x_{1}+4 x_{2}, 3+3 x_{1}-x_{2}\right)$.

Example 4

Determine the affine transformation $f: \mathbb{A}_{3} \longrightarrow \mathbb{A}_{3}$ which transforms the points $P_{0}(0,0,0), P_{1}(0,1,0), P_{2}(1,1,1)$ and $P_{3}(1,1,4)$ in the points $Q_{0}(2,0,2)$, $Q_{1}(2,-1,1), Q_{2}(2,1,3)$ and $Q_{3}(5,7,6)$ respectively.

Solution.

To determine an affine transformation $f: \mathbb{A}_{3} \longrightarrow \mathbb{A}_{3}$ we will need four points that form an affine coordinate system and their images.
The set $\mathcal{R}^{\prime}=\left\{P_{0}(0,0,0), P_{1}(0,1,0), P_{2}(1,1,1), P_{3}(1,1,4)\right\}$ is an affine coordinate system as $\overline{P_{0} P_{1}}=(0,1,0), \overline{P_{0} P_{2}}=(1,1,1)$ and $\overline{P_{0} P_{3}}=(1,1,4)$ is a basis of \mathbb{R}^{3} because

$$
\operatorname{dim}\left(\overline{P_{0} P_{1}}, \overline{P_{0} P_{2}}, \overline{P_{0} P_{3}}\right)=3
$$

We have:

$$
\begin{aligned}
f\left(P_{0}\right) & =Q_{0}=(2,0,0), \\
\bar{f}\left(\overline{P_{0} P_{1}}\right) & =\overline{f\left(P_{0}\right) f\left(P_{1}\right)}=f\left(P_{1}\right)-f\left(P_{0}\right)=Q_{1}-Q_{0}=(0,-1,-1), \\
\bar{f}\left(\overline{P_{0} P_{2}}\right) & =\overline{f\left(P_{0}\right) f\left(P_{2}\right)}=f\left(P_{2}\right)-f\left(P_{0}\right)=Q_{2}-Q_{0}=(0,1,1), \\
\bar{f}\left(\overline{P_{0} P_{3}}\right) & =\overline{f\left(P_{0}\right) f\left(P_{3}\right)}=f\left(P_{3}\right)-f\left(P_{0}\right)=Q_{3}-Q_{0}=(3,7,4) .
\end{aligned}
$$

Therefore

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 3 \\
0 & -1 & 1 & 7 \\
0 & -1 & 1 & 4
\end{array}\right)
$$

To obtain $M_{f}(\mathcal{R}, \mathcal{R})$

$$
\begin{aligned}
M_{f}(\mathcal{R}, \mathcal{R}) & =M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right) M\left(\mathcal{R}, \mathcal{R}^{\prime}\right)= \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 3 \\
0 & -1 & 1 & 7 \\
0 & -1 & 1 & 4
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 4
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & -1 & 0 & 1 \\
0 & 0 & -1 & 2 \\
0 & 1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Thus, $f\left(x_{1}, x_{2}, x_{3}\right)=\left(2-x_{1}+x_{3},-x_{2}+2 x_{3}, x_{1}-x_{2}+x_{3}\right)$.
2.3 Affine invariant subspaces

Proposition Let (\mathbb{A}, V, ϕ) and $\left(\mathbb{A}^{\prime}, V^{\prime}, \phi^{\prime}\right)$ two affine spaces and let $f: \mathbb{A} \longrightarrow$ \mathbb{A}^{\prime} be an affine transformation with associated linear transformation $\bar{f}: V \longrightarrow$ V^{\prime}. The following statements hold:

1. If $L \subset \mathbb{A}$ is an affine subspace of \mathbb{A} then

$$
f(L)=\left\{P^{\prime} \in \mathbb{A}^{\prime} \mid \text { there exists } P \in L \text { such that } f(P)=P^{\prime}\right\}
$$

is an affine subspace of \mathbb{A}^{\prime}.
2. If $L^{\prime} \subset \mathbb{A}^{\prime}$ is an affine subspace of \mathbb{A}^{\prime} then the set

$$
L=\left\{P \in \mathbb{A} \mid f(P) \in L^{\prime}\right\}
$$

is an affine subspace of \mathbb{A}, called the inverse image of L^{\prime} and denoted $f^{-1}\left(L^{\prime}\right)$.

Definition Let (\mathbb{A}, V, ϕ) be an affine space and $f: \mathbb{A} \longrightarrow \mathbb{A}$ an affine transformation. We will say that a point $P \in \mathbb{A}$ is a fixed point of f if $f(P)=P$.

Proposition Let (\mathbb{A}, V, ϕ) be an affine space and $f: \mathbb{A} \longrightarrow \mathbb{A}$ an affine transformation. The set of fixed points of f; this is,

$$
F=\{X \in \mathbb{A} \mid f(X)=X\}
$$

is an affine subspace of \mathbb{A} with associated vector space the subspace of V of eigenvectors of \bar{f} associated to the eigenvalue $\lambda=1$.

Strategy to search for fixed points Let $\mathcal{R}=\{O ; B\}$ be a coordinate system of \mathbb{A}. Let

$$
M_{f}(\mathcal{R})=\left(\begin{array}{cc}
1 & \overline{0}^{t} \\
\bar{b} & A
\end{array}\right)
$$

be the matrix associated to f, where A is the matrix associated to the linear transformation \bar{f} in the basis B.

If P is a fixed point, the following statement holds:

$$
\begin{aligned}
P & =f(P)=f(O+\overline{O P})=f(O)+\bar{f}(\overline{O P}) \\
& =\bar{b}+A \cdot \overline{O P}
\end{aligned}
$$

or equivalently,

$$
\overline{0}=(A-I) \overline{O P}+\bar{b}
$$

which is the equation that the fixed points of f must satisfy.
Example
Obtain the fixed points of the affine transformation

$$
f(x, y)=(-2 y+1, x+3 y-1) .
$$

Solution.
The matrix associated to f is

$$
M_{f}(\mathcal{R}, \mathcal{R})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -2 \\
-1 & 1 & 3
\end{array}\right)
$$

and the matrix associated to the linear transformation \bar{f} is

$$
A=\left(\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right)
$$

The fixed points of f are the solutions $P(x, y)$ of the following matrix equation:

$$
\overline{0}=(A-I) P+\bar{b}
$$

this is

$$
\binom{0}{0}=\left(\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right)\binom{x}{y}+\binom{1}{-1} \Longleftrightarrow x+2 y-1=0
$$

Therefore, the points of the line $x+2 y-1=0$ are the fixed points of f.

Definition Let (\mathbb{A}, V, ϕ) be an affine space, $f: \mathbb{A} \longrightarrow \mathbb{A}$ an affine transformation and S an affine subspace of \mathbb{A}. We will say that S is an invariant affine subspace of f if $f(S) \subset S$.

Observation Let $f: \mathbb{A} \longrightarrow \mathbb{A}$ be an affine transformation with associated linear transformation $\bar{f}: V \longrightarrow V$ and S an affine subspace of \mathbb{A}, which contains the point P and whose associated vector space is generated by the vectors $\bar{u}_{1}, \ldots, \bar{u}_{r}$; this is,

$$
S \equiv P+\left\langle\bar{u}, \ldots, \bar{u}_{r}\right\rangle
$$

Then the affine subspace $f(S)$ contains the point $f(P)$ and is generated by the vectors $\bar{f}\left(\bar{u}_{1}\right), \ldots, \bar{f}\left(\bar{u}_{r}\right)$; this is,

$$
f(S)=f(P)+\left\langle\bar{f}\left(\bar{u}_{1}\right), \ldots, \bar{f}\left(\bar{u}_{r}\right)\right\rangle .
$$

Then S is invariant under f if and only if

1. $\left\langle f\left(\bar{u}_{1}\right), \ldots, \bar{f}\left(\bar{u}_{r}\right)\right\rangle \subset\left\langle u, \ldots, \bar{u}_{r}\right\rangle$
2. $\overline{P f(P)} \in\left\langle\bar{u}, \ldots, \bar{u}_{r}\right\rangle$

In particular, a line $r \equiv P+\langle u\rangle$ is invariant under f if and only if

1. $\langle\bar{f}(\bar{u})\rangle \subset\langle\bar{u}\rangle \Longleftrightarrow \bar{f}(\bar{u})=\lambda \bar{u}$; this is , \bar{u} is an eigenvector of the linear transformation \bar{f}
2. $\overline{P f(P)} \in\langle\bar{u}\rangle$

Example

Obtain the invariant subspaces of the transformation f of the former example.
Solution.
To search for the invariant subspaces of f first we compute the eigenvalues of \bar{f}. The characteristic polynomial A is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)
$$

and, therefore, the eigenvalues of A are $\lambda=1,2$.

The corresponding eigenspaces of \bar{f} are

$$
\begin{aligned}
V(1) & =\{\bar{v} \mid(A-1 I) \bar{v}=\overline{0}\} \\
& =\left\{(x, y) \text { such that }\left(\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right)\binom{x}{y}=\binom{0}{0}\right\} \\
& =\{(x, y) \text { such that } x+2 y=0\}=\langle(2,-1)\rangle \\
V(2) & =\{\bar{v} \mid(A-2 I) \bar{v}=\overline{0}\} \\
& =\left\{(x, y) \text { such that }\left(\begin{array}{cc}
-2 & -2 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0}\right\} \\
& =\{(x, y) \text { such that } x+y=0\}=\langle(1,-1)\rangle
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\overline{P f(P)} & =f(P)-P=(-2 y+1, x+3 y-1)-(x, y) \\
& =(-x-2 y+1, x+2 y-1) \in V(2)
\end{aligned}
$$

as the components of vector $\overline{P f(P)}$ satisfy the equation of $V(2)$.
Therefore, the lines with associated vector space $V(2)=\langle(1,-1)\rangle$ are invariant lines of f because

$$
\begin{aligned}
\bar{f}(1,-1) & =2(1,-1) \\
\overline{P f(P)} & \in V(2)
\end{aligned}
$$

If $x+2 y-1=0$ (this is the line of fixed points of f) then $\overline{P f(P)}=\overline{0} \in V(1)$.
The line of fixed points, is in particular, an invariant line of f.

Example

Let $\left(\mathbb{A}_{3}, V, \phi\right)$ be an affine space and $\mathcal{R}=\left\{O ;\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}\right\}$ a coordinate system of \mathbb{A}_{3}. Determine the affine transformation $f: \mathbb{A}_{3} \longrightarrow \mathbb{A}_{3}$ such that the plane $\pi \equiv x+2 y-z=1$ is a plane of fixed points of f and the vector \bar{e}_{1} is an eigenvector of \bar{f} associated to the eigenvalue 3 .

Solution.
The plane π is a plane of fixed points, any point of the plane is a fixed point of f. For example, the point $P(1,0,0) \in \pi$ is a fixed point of f; this is, $f(P)=P$. Also, we know that the vectors of the vector subspace associated to π, this is, vectors from the plane $\bar{\pi} \equiv x+2 y-z=0$, are eigenvectors associated to the eigenvalue 1.
For example, for

$$
\bar{u}=(1,0,1) \in \bar{\pi}, \bar{v}=(0,1,2) \in \bar{\pi}
$$

we have: $\bar{f}(\bar{u})=\bar{u}$ and $\bar{f}(\bar{v})=\bar{v}$, this is,

$$
\bar{f}(1,0,1)=(1,0,1) \text { and } \bar{f}(0,1,2)=(0,1,2),
$$

and, we also know that $\bar{f}\left(\bar{e}_{1}\right)=3 \bar{e}_{1}$; this is, $\bar{f}(1,0,0)=3(1,0,0)$.
As $B^{\prime}=\left\{\bar{e}_{1}, \bar{u}, \bar{v}\right\}$ is a basis of V, we consider the coordinate system $\mathcal{R}=$ $\left\{P ; B^{\prime}\right\}$. We have:

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Also, we have:

$$
\begin{aligned}
M_{f}(\mathcal{R}) & =M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right) M\left(\mathcal{R}, \mathcal{R}^{\prime}\right)= \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 3 & 4 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Checking the answer. Obviously $\bar{f}\left(\bar{e}_{1}\right)=3 \bar{e}_{1}$ and it holds:

$$
\begin{aligned}
& f(P)=f(1,0,0)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 3 & 4 & -2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)=P \\
& \bar{f}(\vec{u})=\bar{f}(1,0,1)=\left(\begin{array}{ccc}
3 & 4 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\bar{u} \\
& \bar{f}(\vec{v})=\bar{f}(1,0,1)=\left(\begin{array}{ccc}
3 & 4 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\bar{v} .
\end{aligned}
$$

2.4 Some examples of affine transformations of a space in itself

Let (\mathbb{A}, V, ϕ) be an affine space and let $f: \mathbb{A} \longrightarrow \mathbb{A}$ be an affine transformation with associated linear map $\bar{f}: V \longrightarrow V$. Let $M_{f}(\mathcal{R})$ be the matrix associated to f in the coordinate system \mathcal{R}.

2.4.1 Translations

Given a vector $\bar{v} \in V$, we define the translation of vector \bar{v} as the transformation $T_{\bar{v}}: \mathbb{A} \longrightarrow \mathbb{A}$ such that $f(P)=P+\bar{v}$.

Proposition Every translation $T_{\bar{v}}$ is an affine transformation where the associated linear map is the identity.
Proof Given $P, Q \in \mathbb{A}$ the following statement holds:

$$
\begin{aligned}
\bar{T}_{\bar{v}}(\overline{P Q})=\overline{T_{\bar{v}}(P) T_{\bar{v}}(Q)} & =\overline{T_{\bar{v}}(P) P}+\overline{P Q}+\overline{Q T_{\bar{v}}(Q)} \\
& =-\bar{v}+\overline{P Q}+\bar{v}=\overline{P Q} .
\end{aligned}
$$

2.4.2 Projections

An affine transformation $f: \mathbb{A} \longrightarrow \mathbb{A}$ is a projection if $f^{2}=f$. Therefore, if $M_{f}(\mathcal{R})$ is idempotent $\left(M_{f}(\mathcal{R})^{2}=M_{f}(\mathcal{R})\right)$. The linear transformation associated to a projection is also idempotent $\bar{f}^{2}=\bar{f}$.

2.4.3 Homotethy

An affine transformation $f: \mathbb{A} \longrightarrow \mathbb{A}$ is an homothety of ratio r if $\bar{f}=r I d_{V}$, where $I d_{V}$ is the identity map on V.

Remark

A homotethy of ratio r has only one fixed point C called center of the homothety. The image of any other point P is obtained as follows:

$$
f(P)=C+r \overline{C P} .
$$

How to calculate the center of a homothety
Let $C \in \mathbb{A}$ be the center of the homothety f. We have:

$$
C=f(C)=f(P+\overline{P C})=f(P)+\bar{f}(\overline{P C})=f(P)+r \overline{P C} \Longrightarrow \overline{f(P) C}=r \overline{P C}
$$

We also have:

$$
\overline{P C}=\overline{P f(P)}+\overline{f(P) C}=\overline{P f(P)}+r \overline{P C} \Longrightarrow(1-r) \overline{P C}=\overline{P f(P)}
$$

Therefore, the fixed point C verifies

$$
C=P+\frac{1}{1-r} \overline{P f(P)}
$$

Example 1

Study whether the affine transformation $f(x, y, z)=\left(1+\frac{2}{3} x,-1+\frac{2}{3} y, 2+\frac{2}{3} z\right)$ has a fixed point or an invariant subspace.

Solution.

The matrix associated to f is

$$
M_{f}(\mathcal{R})=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & \frac{2}{3} & 0 & 0 \\
-1 & 0 & \frac{2}{3} & 0 \\
2 & 0 & 0 & \frac{2}{3}
\end{array}\right)
$$

and the matrix associated to the linear transformation \bar{f} is

$$
M_{\bar{f}}(B)=\frac{2}{3} I_{\mathbb{R}^{3}} .
$$

Therefore, f is a homothety of ratio $r=\frac{2}{3}$. The center of the homothety is:

$$
C=P+\frac{1}{1-\frac{2}{3}} \overline{P f(P)}
$$

for every $P \in \mathbb{A}$. We take $P(0,0,0)$ then $f(P)=f(0,0,0)=(1,-1,2)$ and $\overline{P f(P)}=(1,-1,2)$, therefore

$$
C=\frac{3}{3-2}(1,-1,2)=(3,-3,6) .
$$

The invariant subspaces of f are:

- The center C since it is a fixed point
- The lines that contain the center
- The planes that contain the center

Example 2

Study whether the affine transformation $f(x, y, z)=(x+1, y+2, z+3)$ has fixed points or invariant subspaces.

Solution.
The matrix associated to f is

$$
M_{f}(\mathcal{R})=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
3 & 0 & 0 & 1
\end{array}\right)
$$

and the matrix associated to the linear transformation \bar{f} is the identity. Therefore, f is a translation of vector $\bar{v}=\overline{O f(O)}=(1,2,3)-(0,0,0)=(1,2,3)$. The translations do not have fixed points.
The invariant subspaces of f are:

- The lines whose direction is the direction of the translation vector; this is, lines $r \equiv P+\langle\bar{v}\rangle$.
- The planes whose direction contains the translation vector; this is, planes of the form $\pi \equiv P+\langle\bar{v}, \bar{w}\rangle$.

Example 3

Study whether the affine transformation $f(x, y, z)=(-2+2 x-y,-4+2 x-$ y, z) has fixed points or invariant subspaces.

Solution.

The matrix associated to f is

$$
M_{f}(\mathcal{R})=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 2 & -1 & 0 \\
-4 & 2 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and the matrix associated to the linear transformation \bar{f} is

$$
A=M_{f}(B)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The eigenvalues of A are the roots of:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & -1 & 0 \\
2 & -1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|=-\lambda(\lambda-1)^{2} .
$$

The matrix A may be idempotent because its eigenvalues are $\lambda=0$ and 1. We can check that $A^{2}=A$ and therefore, A is idempotent. So f is a projection.
The fixed points of f satisfy the following equation:

$$
\overline{0}=(A-I) P+\bar{b}
$$

this is,

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
-2 \\
-4 \\
0
\end{array}\right)
$$

equivalently

$$
\left\{\begin{array}{l}
0=x-y-2 \\
0=2 x-2 y-4 \\
0=0
\end{array}\right.
$$

Therefore the plane π of equation $x-y-2=0$ is a plane of fixed points (its associated vector space is the one of eigenvectors associated to the eigenvalue $\lambda=1$).
The subspace of eigenvectors associated to the eigenvalue $\lambda=0$ is:

$$
\begin{aligned}
V(0) & =\left\{(x, y, z) \text { such that }\left(\begin{array}{ccc}
2 & -1 & 0 \\
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\} \\
& =\{(x, y, z) \text { such that } 2 x-y=0, z=0\}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\overline{P f(P)} & =f(P)-P=(-2+2 x-y,-4+2 x-y, z)-(x, y, z) \\
& =(-2-x-y,-4+2 x-2 y, 0) \in V(0)
\end{aligned}
$$

as the components of the vector $\overline{P f(P)}$ verify the equation of $V(0)$. Therefore, the lines with associated vector space $V(0)=\langle(1,2,0)\rangle$, are invariant lines of f.
The invariant subspaces of f are:

- The lines with associated vector space $V(0)=\langle(1,2,0)\rangle$.
- The planes containing invariant lines.
- The plane of fixed points $\pi \equiv x-y-2=0$.
- The lines contained in the plane of fixed points are lines of fixed points.

Example 4

Obtain the analytic expression of the affine tranformation $f: \mathbb{A}_{3} \longrightarrow \mathbb{A}_{3}$ that sends the origin to the point $(3,1,1)$ and whose plane π of cartesian equation $x_{1}+2 x_{2}-x_{3}+1=0$, is a plane of fixed points.
Solution.
As the plane π is a plane of fixed points, the vector plane associated with π is a plane of eigenvectors associated with the eigenvalue $\lambda=1$ of the associated linear transformation \bar{f}.
As $\pi \equiv P+\left\langle\bar{u}_{1}, \bar{u}_{2}\right\rangle$ with $P(0,0,1), \bar{u}_{1}=(1,0,1), \bar{u}_{2}=(0,1,2)$ then $P \in \pi$ (this is, the coordinates of P are a solution of the equation of π) and the vectors $\bar{u}_{1}, \bar{u}_{2} \in \bar{\pi}$ (their coordinates are a solution of the associated homogeneous equation: $x_{1}+2 x_{2}-x_{3}=0$).

Therefore, we have:

$$
\begin{aligned}
f(0,0,0) & =(3,1,1) \\
f(0,0,1) & =(0,0,1) \\
\bar{f}\left(\bar{u}_{1}\right) & =\bar{u}_{1} \Longrightarrow \bar{f}(1,0,1)=(1,0,1) \\
\bar{f}\left(\bar{u}_{2}\right) & =\bar{u}_{2} \Longrightarrow \bar{f}(0,1,2)=(0,1,2)
\end{aligned}
$$

From the first two conditions we obtain

$$
\begin{aligned}
\bar{f}(\overline{O P}) & =f(P)-f(O)=(0,0,1)-(3,1,1) \\
& =(-3,-1,0) .
\end{aligned}
$$ Thus, considering the coordinate system $\mathcal{R}^{\prime}=\left\{P ; \overline{O P}, \bar{u}_{1}, \bar{u}_{2}\right\}$ (notice that $\overline{O P}, \bar{u}_{1}, \bar{u}_{2}$ are linearly independent), we obtain:

$$
M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & -3 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 0 & 1 & 2
\end{array}\right)
$$

Since

$$
M\left(\mathcal{R}^{\prime}, \mathcal{R}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 2
\end{array}\right)
$$

we have

$$
\begin{aligned}
& M_{f}(\mathcal{R}, \mathcal{R})=M_{f}\left(\mathcal{R}^{\prime}, \mathcal{R}\right) \cdot M\left(\mathcal{R}^{\prime}, \mathcal{R}\right)^{-1} \\
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 & -3 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
6 & 4 & 6 & -3 \\
2 & 1 & 3 & -1 \\
1 & 1 & 2 & 0
\end{array}\right) .
\end{aligned}
$$

So the analytic expression of f is:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(6+4 x_{1}+6 x_{2}-3 x_{3}, 2+x_{1}+3 x_{2}-x_{3}, 1+x_{1}+2 x_{2}\right)
$$

