## OPERATIONS WITH SUBSPACES

In $R^{4}$ let us consider the following vector subspaces
$\mathrm{S}=<(1,-1,2,-3),(2,-2.4 .-3),(1,1,2,0)>$
$\mathrm{T}=<(0,-2,0,-3),(1,0,1,0)>$
With respect to the standard basis of $R^{4}$, compute the cartesian equations, the parametric equations, the dimension and a basis of $\mathrm{S}, \mathrm{T}, \mathrm{S}+\mathrm{T}$, and S interseccion T.
Are S and T complementary subspaces?
[> restart;
[> with(linalg):

$$
\begin{align*}
& \text { S } \\
& {[>\mathrm{v} 1:=[1,-1,2,-3] ; \mathrm{v} 2:=[2,-2,4,-3] ; \mathrm{v} 3:=[1,1,2,0] \text {; }} \\
& v 1:=[1,-1,2,-3] \\
& v 2:=[2,-2,4,-3] \\
& v 3:=[1,1,2,0]  \tag{1.1}\\
& \text { > MS:=matrix([v1,v2,v3]); } \\
& M S:=\left[\begin{array}{rrrr}
1 & -1 & 2 & -3 \\
2 & -2 & 4 & -3 \\
1 & 1 & 2 & 0
\end{array}\right]  \tag{1.2}\\
& >\operatorname{rank}(M S) \text {; } \\
& \operatorname{dim}(S)=3 \text { and } \mathrm{BS}=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\} \text { is a basis. } \\
& \text { The parametric equations are: } \\
& >[\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4]=\text { expand ( } \mathrm{a} * \mathrm{v} 1+\mathrm{b} * \mathrm{v} 2+\mathrm{c} * \mathrm{v} 3 \text { ); } \\
& {[x 1, x 2, x 3, x 4]=[c+2 b+a, c-2 b-a, 2 c+4 b+2 a,-3 b-3 a]} \tag{1.4}
\end{align*}
$$

The number of cartesian equations of S is $4-\operatorname{dim}(\mathrm{S})=1$

$$
\begin{align*}
& >\operatorname{ES}:=\text { matrix }([[\mathbf{x} 1, \mathbf{x} 2, \mathbf{x} 3, \mathbf{x} 4], \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3]) ; \\
& E S:=\left[\begin{array}{cccc}
x 1 & x 2 & x 3 & x 4 \\
1 & -1 & 2 & -3 \\
2 & -2 & 4 & -3 \\
1 & 1 & 2 & 0
\end{array}\right]  \tag{1.5}\\
&  \tag{1.6}\\
& >\operatorname{cartS}:=\operatorname{det}(\mathrm{ES})=0 ; \quad
\end{align*}
$$

$$
\begin{align*}
& \text { T } \\
& w 1:=[0,-2,0,-3] \\
& w 2:=[1,0,1,0]  \tag{2.1}\\
& \text { > MT:=matrix([w1,w2]); } \\
& M T:=\left[\begin{array}{rrrr}
0 & -2 & 0 & -3 \\
1 & 0 & 1 & 0
\end{array}\right]  \tag{2.2}\\
& >\operatorname{rank}(M T) \text {; }  \tag{2.3}\\
& \operatorname{dim}(T)=2 \text { and } B T=\{w 1, w 2\} \text { is a basis. } \\
& \text { The parametric equations are: } \\
& {[x 1, x 2, x 3, x 4]=\text { expand }(a * w 1+b * w 2) \text {; }} \\
& {[x 1, x 2, x 3, x 4]=[b,-2 a, b,-3 a]} \tag{2.4}
\end{align*}
$$

The number of cartesian equations of T is $4-\operatorname{dim}(\mathrm{T})=2$

$$
\begin{align*}
& \text { > ET: }=\text { matrix ([ [x1, x2, x3, } x 4] \text {,w1,w2]); } \\
& E T:=\left[\begin{array}{cccc}
x 1 & x 2 & x 3 & x 4 \\
0 & -2 & 0 & -3 \\
1 & 0 & 1 & 0
\end{array}\right]  \tag{2.5}\\
& \text { > ET1:=submatrix(ET, 1..3,1..3);ET2:=submatrix(ET,1..3,[1,2,4]); } \\
& \text { ET1 : }=\left[\begin{array}{ccc}
x 1 & x 2 & x 3 \\
0 & -2 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& E T 2:=\left[\begin{array}{ccc}
x 1 & x 2 & x 4 \\
0 & -2 & -3 \\
1 & 0 & 0
\end{array}\right]  \tag{2.6}\\
& \text { > cartT1:=det(ET1); cartT2:=det(ET2); } \\
& \text { cartT1 }:=-2 x 1+2 x 3 \\
& \text { cartT2 }:=-3 x 2+2 \times 4 \tag{2.7}
\end{align*}
$$

## S+T

S+T=<v1,v2,v3,w1,w2>
> MST:=stackmatrix (MS,MT) ;

$$
M S T:=\left[\begin{array}{rrrr}
1 & -1 & 2 & -3 \\
2 & -2 & 4 & -3  \tag{3.2}\\
1 & 1 & 2 & 0 \\
0 & -2 & 0 & -3 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Thus $\operatorname{dim}(\mathrm{S}+\mathrm{T})=4$ and $\mathrm{S}+\mathrm{T}=R^{4}$ and it has no equations.

## $\nabla \mathrm{SnT}$

By the $\operatorname{Grassman}$ formula $\operatorname{dim}(S \cap T)=\operatorname{dim}(S)+\operatorname{dim}(T)-\operatorname{dim}(S+T)=3+2-4=1$ and the number of cartesian equations is 3 .

$$
\begin{align*}
& \text { > cartS; cartT1; cartT2; } \\
& 12 x 1-6 x 3=0 \\
& -2 x 1+2 x 3 \\
& -3 x 2+2 x 4  \tag{4.1}\\
& \text { > solve(\{cartS, cartT1, cartT2\}, }\{x 1, x 2, x 3, x 4\}) \text {; } \\
& \left\{x 1=0, x 2=x 2, x 3=0, x 4=\frac{3}{2} x 2\right\}  \tag{4.2}\\
& \text { > parSintT:=[0,a,0,3*a/2]; } \\
& \text { parSintT }:=\left[0, a, 0, \frac{3}{2} a\right] \tag{4.3}
\end{align*}
$$

A basis of $\mathrm{S} \cap \mathrm{T}$ is $\{(0,1,0,3 / 2)\}$.
S and T are not complementary because their intersection is not zero.

## NEW COMMANDS USED:

stackmatrix $(\mathbf{A}, \mathbf{B}, \ldots$.$) joints several matrices vertically$
submatrix(A, Rrange, Crange) submatrix of A with rows in Rrange and columns in Crange.

## Exercice 20, Sheet 1.

