KERNEL AND IMAGE OF A LINEAR MAP

Let $\mathbf{f}: R^{4} \rightarrow R^{4}$ be the linear map defined by

$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=(3 \mathrm{x}+3 \mathrm{y}+\mathrm{z}+4 \mathrm{t}, \mathrm{x}+3 \mathrm{y}, 3 \mathrm{x}+2 \mathrm{y}-\mathrm{z}, \mathrm{z}+\mathrm{y}+4 \mathrm{t})$.
[> restart; with(linalg):

Give the matrix expression of f.

$$
\begin{gather*}
>\text { Mf:=matrix }(4,4,[2,3,1,4,1,3,0,0,3,2,1,0,1,0,1,4]) ; \\
M f:=\left[\begin{array}{llll}
2 & 3 & 1 & 4 \\
1 & 3 & 0 & 0 \\
3 & 2 & 1 & 0 \\
1 & 0 & 1 & 4
\end{array}\right] \tag{1.1.1}\\
>\text { evalm (Mf) \&*matrix }(4,1,[\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathrm{t}])=\text { matrix }(4,1,[\mathrm{xp}, \mathrm{yp}, \mathbf{z p}, \mathrm{tp}]) ; \\
{\left[\begin{array}{llll}
2 & 3 & 1 & 4 \\
1 & 3 & 0 & 0 \\
3 & 2 & 1 & 0 \\
1 & 0 & 1 & 4
\end{array}\right] \& *\left[\begin{array}{c}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
x p \\
y p \\
z p \\
t p
\end{array}\right]} \tag{1.1.2}
\end{gather*}
$$

Obtain the dimension and a basis of $\operatorname{Im}(f) . \operatorname{Im}(f)=<f(e 1), f(e 2), f(e 3), f$ (e4)>

```
>> rank (Mf);
```

$\operatorname{dim} \operatorname{Im}(\mathrm{f})=3$. A basis of $\operatorname{Im}(\mathrm{f})$ is
[> S:=submatrix (Mf, 1..4,1..3);

$$
S:=\left[\begin{array}{lll}
2 & 3 & 1 \tag{1.2.2}\\
1 & 3 & 0 \\
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

$>\operatorname{rank}(S)$;

$$
\begin{equation*}
3 \tag{1.2.3}
\end{equation*}
$$

$[>v 1:=[2,1,3,1] ; \mathrm{v} 2:=[3,3,2,0] ; \mathrm{v} 3:=[1,0,1,1] ;$

$$
\begin{align*}
& v 1:=[2,1,3,1] \\
& v 2:=[3,3,2,0] \\
& v 3:=[1,0,1,1] \tag{1.2.4}
\end{align*}
$$

$\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ is a basis of $\operatorname{Im}(\mathrm{f})$.

Obtain the dimension, a basis of $\operatorname{Ker}(f)$ and its cartesian equations.

$$
\operatorname{dim} \operatorname{Ker}(\mathrm{f})=4-\operatorname{dim} \operatorname{Im}(\mathrm{f})=1
$$

$$
\left[\begin{array}{l}
>\text { zero: }=\text { matrix }(4,1,[0,0,0,0]) ; \tag{1.3.1}\\
\text { zero }:=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{array}\right]
$$

[> linsolve (Mf, zero) ;

$$
\left[\begin{array}{c}
3-t_{1_{1}} \tag{1.3.2}\\
--t_{1} \\
-7-t_{1} \\
-t_{1}
\end{array}\right]
$$

$\{\mathrm{w}\}$ is a basis of $\operatorname{Ker}(\mathrm{f})$.
> S2:=submatrix (Mf,1..3,1..4);

$$
S 2:=\left[\begin{array}{llll}
2 & 3 & 1 & 4 \tag{1.3.4}\\
1 & 3 & 0 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

$[>$ equations $:=\operatorname{evalm}(\operatorname{S2\& } * \operatorname{matrix}(4,1,[x, y, z, t])=\operatorname{matrix}(3,1,[0,0,0]$));

$$
\text { equations }:=\left[\begin{array}{c}
2 x+3 y+z+4 t \tag{1.3.6}\\
x+3 y \\
3 x+2 y+z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

[> linsolve(S2,matrix (3, $1,[0,0,0]))$;

$$
\left[\begin{array}{c}
3-t_{1_{1}} \\
--t_{1_{1}} \\
-7-t_{1_{1}} \\
-t_{1_{1}}
\end{array}\right]
$$

Is f injective, surjective or bijective? No.
Let $\mathbf{f}: R^{4} \rightarrow R^{4}$ be the linear map defined by
$\mathbf{f}(\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0})=(\mathbf{3}, 2,1,1), \mathbf{f}(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0})=(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}), \mathbf{f}(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0})=(\mathbf{3}, 2,1,4), \mathbf{f}(\mathbf{0}$, $0,0,1)=(5,4,0,-1)$.
[> restart; with(linalg):
Compute $M_{f}\left(B_{4}, B_{4}\right)$.
$[>$ fe1 $:=[3,2,1,1] ;$ fe $2:=[0,1,0,0] ;$ fe3 $:=[3,2,1,4] ;$ fe $4:=[5,4,0,-1]$; fel $:=[3,2,1,1]$ $f e 2:=[0,1,0,0]$ $f e 3:=[3,2,1,4]$
$f e 4:=[5,4,0,-1]$
> Mf:=transpose(matrix ([fe1,fe2,fe3,fe4]));

$$
M f:=\left[\begin{array}{rrrr}
3 & 0 & 3 & 5 \tag{2.1.2}\\
2 & 1 & 2 & 4 \\
1 & 0 & 1 & 0 \\
1 & 0 & 4 & -1
\end{array}\right]
$$

Obtain the dimension and a basis of $\operatorname{Im}(f)$.

$\operatorname{Im}(\mathrm{f})=<\mathrm{f}(\mathrm{e} 1), \mathrm{f}(\mathrm{e} 2), \mathrm{f}(\mathrm{e} 3), \mathrm{f}(\mathrm{e} 4)>$
$[>\operatorname{rank}(M f) ;$
4
Therefore, $\operatorname{Im}(\mathrm{f})=R^{4}$.

Obtain the dimension of $\operatorname{Ker(f).~Is~} f$ injective? Is f surjective? Is f bijective?

$\operatorname{dim} \operatorname{Ker}(\mathrm{f})=\operatorname{dim} R^{4}-\operatorname{dim} \operatorname{Im}(\mathrm{f})=4-4=0$.
$\operatorname{Ker}(\mathrm{f})=\{(0,0,0,0)\}$ implies that f is injective and, since f is an endomorphism, f is also surjective. Finally, we can say that f is bijective.

