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Syntax of a first-order languagep

An alphabet A consists of

variable symbols: x , y , z , w , x ′, . . .

function symbols: f ( ), g( , ), . . . (arity = no. of args: f /1, g/2)

predicate symbols: p( ), q( , ), . . . , = /2

connectives: ¬, ∨, ∧, →, ↔
quantifiers: ∀, ∃

constants (a, b, c , . . . ) = 0-arity functions

propositions = 0-arity predicates

Metalanguage

F and G denote arbitrary formulæ
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Syntax of a first-order languagep

variable symbols: x , y , z

constant (0-ary functions) symbols: a, b, c , tom, 0, 1

function symbols: f /1, g/2

predicate symbols: p/0, q/2, cat/1, +/3

Terms
a variable is a term

if t1, ..., tn are terms and f is an n-ary (n ≥ 0, thus including constants)
function symbol, then f (t1, ..., tn) is a term

Examples

a f (tom) f (1 a() a(1) f (2) g(g , g(1)) q(0, f (1))
a + y g(1, f (a)) g(0c) cat(cat(0)) +(a, f (z), c) f (f (f (x)))
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Syntax of a first-order languagep

variable symbols: x , y , z

constant (0-ary functions) symbols: a, b, c , tom, 0, 1

function symbols: f /1, g/2

predicate symbols: p/0, q/2, cat/1, +/3

Atoms

if t1, ..., tn are terms and p is an n-ary (n ≥ 0) predicate symbol, then
p(t1, ..., tn) is an atom

Examples

cat(g(x , y)) p q q(∀xp(x),∀xp(f (x))) q(p, p) f (q(a, a))
q(a, f (1)) +(a, f (z), c) q(0, , z) cat(a, 1) cat(cat(f (1)))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1



Syntax of a first-order languagep

variable symbols: x , y , z

constant (0-ary functions) symbols: a, b, c , tom, 0, 1

function symbols: f /1, g/2

predicate symbols: p/0, q/2, cat/1, +/3

Formulæ
an atom is a formula

if F and G are formulæ, and x is a variable, then ¬F , (F ∧ G ), (F ∨ G ),
(F → G ), (F ↔ G ), ∀xF and ∃xF are also formulæ

Examples

(p → ¬q(a, f (x))) p∧ ∃zf (1) ∀a(q(a, 0)↔ g(0, a))
∀p (¬cat(a) ∧ (∀xp ∨ ∃ycat(y))) q(a, b)↔ tom
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Syntax of a first-order languagep

Literals
A literal is an atom or the negation of an atom

p, ¬p, q(a, f (1)), ¬q(a, f (1)), cat(g(x , y)), ¬cat(g(x , y))

Precedence
parentheses give an order between operators, but can make a formula quite
unreadable

we can use an order of precedence between operators in order to remove
some parentheses without introducing ambiguity

((p ∧ ¬q)→ (p ∨ r))  p ∧ ¬q → p ∨ r  

p ∧ (¬q → p) ∨ r
((p ∧ ¬q)→ p) ∨ r
(p ∧ ¬q)→ (p ∨ r)
p ∧ (¬q → p ∨ r)
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Syntax of a first-order languagep

Literals
A literal is an atom or the negation of an atom

p, ¬p, q(a, f (1)), ¬q(a, f (1)), cat(g(x , y)), ¬cat(g(x , y))

Precedence
parentheses give an order between operators, but can make a formula quite
unreadable

we can use an order of precedence between operators in order to remove
some parentheses without introducing ambiguity

{¬,∀,∃} higher precedence than {∧,∨}
{∧,∨} higher precedence than {→,↔}

+ the scope of ∃ in ∃yp(y) ∧ q(y) is only p(y), not the whole formula
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Syntax of a first-order languagep

Free and bounded variable occurrences
an occurrence of the variable x is bounded in F if it is in the scope of a
quantifier ∀x or ∃x

∃x(p(1, x , y) ∧ q(x)) ∧ q(x)

otherwise, it is said to be free

∃x(p(1, x , y) ∧ q(x)) ∧ q(x)

a formula if closed if it contains no free occurrences

+ occurrences, not variable symbols, can be free or bounded
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Syntax of a first-order languagep

Substitution

F (x) denotes a formula where x occurs free somewhere

F (x/t) denotes a formula where every free occurrence of x has been replaced
by a term t

+ provided x does not occur free in the scope of any ∀y or ∃y for y occurring
in t

F ≡ s(x) ∧ (∀y(p(x)→ q(y))) F (x/f (y , y)) cannot be done

+ ∀xp(x) is the same as ∀yp(y) (general result: ∀xF (x)↔ ∀yF (x/y))

+ if you are not sure about the name of variables, it is never a mistake to
rename all the bounded occurrences of a variable
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Syntax of a first-order languagep

Alternative notation

∧ & → ⇒, ⊃
↔ ⇔, ≡ ∃xF ∃x . F , ∃x | F
∀xF ∀x . F , ∀x | F p, q, r P, Q, R

More than first-order
second-order logic: it allows quantification over functions and predicates
(e.g., mathematical induction)

∀p(p(0) ∧ ∀k(p(k)→ p(s(k)))→ ∀np(n))

higher-order logic allows quantification over functions and predicates of any
order (as in functional programming)
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Semantics of a first-order languagep

Interpretations

An interpretation I is a pair (D, I ), where D 6= ∅ is a set (the domain of the
universe) and I maps symbols to individuals or functions

constants: I (a) = d ∈ D

variables: I (x) = d ∈ D

functions: I (f /n) = F : Dn 7→ D

I (f (t1, ..., tn)) = F(I (t1), ..., I (tn)) = F(d1, ..., dn) ∈ D

predicates: I (p/n) = P : Dn 7→ {t, f}
I (p(t1, ..., tn)) = P(I (t1), ..., I (tn)) = P(d1, ..., dn) ∈ {t, f}

+ an interpretation assigns an element of D to any term, and a truth value to
any predicate applied to terms

P is an n-ary relation R: P(d1, ..., dn) = t iff 〈d1, ..., dn〉 ∈ R
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Semantics of a first-order languagep

Evaluation of a formula
Assigning a truth value to a formula, according to:

the chosen interpretation of constants, functions and predicates

the rules for evaluation (see also truth tables)

I (¬F ) = t iff I (F ) = f
I (F ∧ G ) = t iff I (F ) = I (G ) = t
I (F ∨ G ) = f iff I (F ) = I (G ) = f
I (F → G ) = f iff I (F ) = t and I (G ) = f
I (F ↔ G ) = t iff I (F ) = I (G )
I (∀xF (x)) = t iff I (F (x/c)) = t ∗ for every constant c
I (∃xF (x)) = t iff I (F (x/c)) = t ∗ for at least one constant c
∗ it is required that every element d of D is denoted by at least one constant

I (instead of I) will often denote an interpretation when D is clear

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1



Semantics of a first-order languagep

Example (propositional): (p → q) ∧ (q → r)→ r

first interpretation: I ′(p) = f, I ′(q) = f, I ′(r) = f

(f → f) ∧ (f → f) → f
t ∧ t → f

t → f
f
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Semantics of a first-order languagep

Example (propositional): (p → q) ∧ (q → r)→ r

second interpretation: I ′′(p) = f, I ′′(q) = f, I ′′(r) = t

(f → f) ∧ (f → t) → t
t ∧ t → t

t → t
t
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Semantics of a first-order languagep

Example (propositional): (p → q) ∧ (q → r)→ r

this example only needs truth tables, for all possible interpretations

p q r p → q q → r (p → q) ∧ (q → r) (p → q) ∧ (q → r) → r

t t t t t t t
t t f t f f t
t f t f t f t
t f f f t f t
f t t t t t t
f t f t f f t
f f t t t t t
f f f t t t f
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Semantics of a first-order languagep

Example (first-order): ∀x(m(a, x) ∧ p(x))→ ∀yq(s(y))

first interpretation: D = {0, 1, 2, 3, ..}
I (a) = 0
I (s(x)) = S(I (x)) = the successor of I (x)
p(x) means that x is even
q(x) means that x is odd
m(x , y) means that x < y

I evaluates the formula to t (try it!)
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Semantics of a first-order languagep

Example (first-order): ∀x(m(a, x) ∧ p(x))→ ∀yq(s(y))

second interpretation: D =
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� �
,
� ��

, I (a) =

� �
�

x s(x)

� �
� � �

� �
 � ��
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x p(x)

� �
� t
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 t

� �� t

x q(x)

� �
� t

� �
 f

� �� t

m y
x

� �
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 � ��

� �
� t t t

� �
 f f t

� �� t f f

and this evaluates to f
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Semantics of a first-order languagep

Satisfiable formulæ

An interpretation I = (D, I ) satisfies a formula F on D iff I (F ) = t (also written
I(F ) = t). In this case, I is a model of F

F is satisfiable (written SAT (F )) iff it has at least one model

F is unsatisfiable (written UNSAT (F )) iff it has no models

that is, all interpretations are countermodels

F is valid (written VAL(F )) iff every interpretation is a model

this is denoted by |= F , and amounts to say UNSAT (¬F )

With a set of formulæ {F1, .., Fn}:
(D, I ) satisfies {F1, .., Fn} iff I (Fi ) = t on D for every i

{F1, .., Fn} is satisfiable iff there is such an interpretation

Example: ∀x(m(a, x) ∧ p(x))→ ∀yq(s(y))

this formula is satisfiable but not valid
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Logical consequencep

Logical consequence

Given a set of formulæ Γ = {F1, .., Fn} and a formula G over the same language,
G is a logical consequence of Γ (written Γ |= G ) iff every interpretation satisfying
Γ also satisfies G , or, equivalently, there is no interpretation which satisfies Γ but
not G

Important (in some sense, it is a matter of convenience)

{F1, .., Fn} |= G iff |= (F1 ∧ .. ∧ Fn)→ G

To decide Γ |= G can be very hard

We have to take all models of Γ and verify that they all satisfy G , or find a
counterexample
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Logical consequencep

Example: {p → (q → r), p ∧ q} |= r

+ equivalent to |= ((p → (q → r)) ∧ (p ∧ q))→ r

p q r p → (q → r) p ∧ q (p → (q → r)) ∧ (p ∧ q) G
t t t t t t t
t t f f t f t
t f t t f f t
t f f t f f t
f t t t f f t
f t f t f f t
f f t t f f t
f f f t f f t
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Logical consequencep

Example: {p → (q → r), p ∧ q} |= ¬r

+ equivalent to |= ((p → (q → r)) ∧ (p ∧ q))→ ¬r

p q r p → (q → r) p ∧ q (p → (q → r)) ∧ (p ∧ q) G
t t t t t t f
t t f f t f t
t f t t f f t
t f f t f f t
f t t t f f t
f t f t f f t
f f t t f f t
f f f t f f t
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Logical consequencep

Example: {∃xp(x), ∃xq(x)} |= ∃x(p(x) ∧ q(x))

D = {1, 2, 3, 4, ..}
p(x): x is even

q(x): x is odd

It is easy to see that this interpretation makes both premises true (indeed, there
exist even numbers and there exist odd numbers), but does not satisfy the
conclusion (no numbers are both even and odd)

I (∃xp(x)) = t I (∃xq(x)) = t I (∃x(p(x) ∧ q(x))) = f

Therefore, this deduction is incorrect

Example: {∃xp(x), ∃xq(x)} |= ∃x(p(x) ∨ q(x))

this is, of course, a correct deduction (or valid, see a few slides above)
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Syntax vs. semanticsp

Formal systems

A proof formal system consists of:

a formal language (alphabet and rules for building formulæ)

a set of logical axioms (i.e., valid formulæ, which do not require proof)

a set of inference rules for proving new formulæ

a definition of proof

Theories

A theory T is a formal system extended with a set Γ of non-logical axioms (i.e.,
formulæ taken for granted)

T [Γ]

if Γ = ∅, then T is the basic theory of the formal system
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Syntax vs. semanticsp

Proofs

A proof of a formula G in a theory T [Γ] (written T [Γ] ` G ) is a finite sequence of
formulæ such that

each formula of the sequence is either

a logical or non-logical axiom of the theory; or
the result of applying an inference rule to previous formulæ in the sequence

G is the last formula in the sequence

Theorems (of a theory)

a theorem of the theory T [Γ] is a formula for which there is at least one
proof in T [Γ]
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Syntax vs. semanticsp

Proof example: T [p → (q → r), p ∧ q] ` r

¶ p → (q → r) first premise
· ¬p ∨ (¬q ∨ r) interdefinition of →, ¬ and ∨ on ¶
¸ (¬p ∨ ¬q) ∨ r associativity on ·
¹ ¬(p ∧ q) ∨ r De Morgan on ¸
º p ∧ q → r interdefinition of →, ¬ and ∨ on ¹
» p ∧ q second premise
¼ r modus ponens on º, »

Another approach to prove validity

Instead of looking at all the possible models of a formula, we exploited our
knowledge of logical rules

we also say that ((p → (q → r)) ∧ (p ∧ q))→ r is a tautology
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Syntax vs. semanticsp

Theorem (Validity)

Every theorem of T is logically valid: if T ` G then |= G

Theorem (Completeness)

In a first-order theory T , all valid formulæ are theorems of T : if |= G then T ` G

the rest of the course will be basically about finding such formulæ

Theorem (Deduction)

T [F1, .., Fn] ` G iff T ` (F1 ∧ .. ∧ Fn)→ G
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Syntax vs. semanticsp

Theorem (Validity)

Every theorem of T is logically valid: if T ` G then |= G

Theorem (Completeness)

In a first-order theory T , all valid formulæ are theorems of T : if |= G then T ` G

the rest of the course will be basically about finding such formulæ

Theorem (Deduction)

T [F1, .., Fn] ` G iff T ` (F1 ∧ .. ∧ Fn)→ G

T [F1, .., Fn] ` G iff VAL((F1 ∧ .. ∧ Fn)→ G )

T [F1, .., Fn] ` G iff UNSAT (F1 ∧ .. ∧ Fn ∧ ¬G )
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Syntax vs. semanticsp

Completeness vs. Incompleteness

in theories where Gödel’s first incompleteness theorem holds, the
completeness theorem (also Gödel’s) holds as well

incompleteness: an effectively generated (whose set of axioms is a recursively
enumerable set) theory which is powerful enough to express elementary
arithmetic cannot be both consistent (there is no statement so that both the
statement and its negation are provable from the axioms) and complete (for
any statement in the axioms’ language, either that statement or its negation
is provable from the axioms)

there is a statement which is true in the theory, but cannot be proven nor
disproven (the Gödel sentence)

but such statement is not a logical consequence of the theory (i.e., there are
non-standard models, not isomorphic to the standard one, of the theory
where it does not hold)
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What you ABSOLUTELY have to getp

Pay attention to these sentences (do they make sense?)

the interpretation I is satisfiable

there exists a valid model for F

a formula F makes an interpretation I false

in order to prove that a formula is satisfiable, we need a true interpretation

a literal is a negated or non-negated term

+ we are not asking if these sentences are true or false, only if they make sense
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What you ABSOLUTELY have to getp

Names and individuals
Names are only there to denote things

there is no problem in taking

female

 � ��
 or even odd(4)

to be true if we are always consistent about it

never forget that you are dealing with symbols!
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What you ABSOLUTELY have to getp

Types in first-order logic!

a function of arity n will never have arity m 6= n in the same formal system

a predicate of arity n will never have arity m 6= n in the same formal system

a function is not a predicate

a predicate is not a function

Equality

the predicate = /2 is special in the sense that its meaning is often given for
granted in a formal system (i.e., being equal means being the same element
of the domain)

anyway, we could choose to redefine it!
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What you ABSOLUTELY have to getp

Interpretations and imagination

When we want to prove that a formula is not valid, we need one interpretation
which makes it false

you can choose anything you want as D and I

it’s ok if we take that function s/1 to map 45 to
� �
!
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What you ABSOLUTELY have to getp

Implication

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

that the left-hand side of an implication is false is enough to say that the
implication is true

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1



What you ABSOLUTELY have to getp

Implication, cont.

all red apples are good

∀x((apple(x) ∧ red(x))→ good(x))

there are apples which are red and good
all apples are red and good
there are no apples which are red but not good
the set of good apples is a superset of the set of red apples
whenever an apple is not good, it cannot be red
whenever an apple is not good, it must be red

there exists a yellow apple which is bad

∃x(apple(x) ∧ yellow(x) ∧ bad(x))

whenever an apple is yellow, it is bad
there is at least an object which is bad and yellow, and is an apple
every time an apple is good, it is not yellow
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What you ABSOLUTELY have to getp

Implication, cont.

all red apples are good

∀x((apple(x) ∧ red(x))→ good(x))

there are apples which are red and good  NO
all apples are red and good  NO
there are no apples which are red but not good  YES
the set of good apples is a superset of the set of red apples  YES
whenever an apple is not good, it cannot be red  YES
whenever an apple is not good, it must be red  NO

there exists a yellow apple which is bad

∃x(apple(x) ∧ yellow(x) ∧ bad(x))

whenever an apple is yellow, it is bad  NO
there is at least an object which is bad and yellow, and is an apple  YES
every time an apple is good, it is not yellow  NO
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