Computational Logic Recall of First-Order Logic

Damiano Zanardini
UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

Syntax of a first-order language

An alphabet \mathcal{A} consists of

- variable symbols: $x, y, z, w, x^{\prime}, \ldots$
- function symbols: $f(-), g(-,-), \ldots$ (arity $=$ no. of args: $f / 1, g / 2)$
- predicate symbols: $p(-), q(-,-), \ldots,=/ 2$
- connectives: $\neg, \vee, \wedge, \rightarrow, \leftrightarrow$
- quantifiers: \forall, \exists
- constants $(a, b, c, \ldots)=0$-arity functions
- propositions $=0$-arity predicates

Metalanguage

F and G denote arbitrary formulæ

Syntax of a first-order language

- variable symbols: x, y, z
- constant (0-ary functions) symbols: a, b, c, tom, 0,1
- function symbols: $f / 1, g / 2$
- predicate symbols: $p / 0, q / 2, c a t / 1,+/ 3$

Terms

- a variable is a term
- if t_{1}, \ldots, t_{n} are terms and f is an n-ary ($n \geq 0$, thus including constants) function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Examples

$$
\begin{array}{rlllll}
a & f(\text { tom }) & f(1 & a() & a(1) & f(2) \\
a+y(g, g(1)) & q(0, f(1)) \\
a+y & g(1, f(a)) & g(0 c) & \operatorname{cat}(\operatorname{cat}(0)) & +(a, f(z), c) & f(f(f(x)))
\end{array}
$$

Syntax of a first-order language

- variable symbols: x, y, z
- constant (0-ary functions) symbols: a, b, c, tom, 0,1
- function symbols: $f / 1, g / 2$
- predicate symbols: $p / 0, q / 2, c a t / 1,+/ 3$

Atoms

- if t_{1}, \ldots, t_{n} are terms and p is an n-ary $(n \geq 0)$ predicate symbol, then $p\left(t_{1}, \ldots, t_{n}\right)$ is an atom

Examples

$$
\begin{array}{ccccccc}
\operatorname{cat}(g(x, y)) & p & q & q(\forall x p(x), \forall x p(f(x))) & q(p, p) & f(q(a, a)) \\
q(a, f(1)) & +(a, f(z), c) & q(0,, z) & \operatorname{cat}(a, 1) & \operatorname{cat}(\operatorname{cat}(f(1)))
\end{array}
$$

Syntax of a first-order language

- variable symbols: x, y, z
- constant (0-ary functions) symbols: a, b, c, tom, 0,1
- function symbols: $f / 1, g / 2$
- predicate symbols: $p / 0, q / 2, c a t / 1,+/ 3$

Formulæ

- an atom is a formula
- if F and G are formulæ, and x is a variable, then $\neg F,(F \wedge G),(F \vee G)$, $(F \rightarrow G),(F \leftrightarrow G), \forall x F$ and $\exists x F$ are also formulæ

Examples

$$
\begin{gathered}
(p \rightarrow \neg q(a, f(x))) \quad p \wedge \quad \exists z f(1) \quad \forall a(q(a, 0) \leftrightarrow g(0, a)) \\
\forall p \quad(\neg \operatorname{cat}(a) \wedge(\forall x p \vee \exists y \operatorname{cat}(y))) \quad q(a, b) \leftrightarrow t o m
\end{gathered}
$$

Syntax of a first-order language

Literals

A literal is an atom or the negation of an atom

- $p, \neg p, q(a, f(1)), \neg q(a, f(1)), \quad \operatorname{cat}(g(x, y)), \neg \operatorname{cat}(g(x, y))$

Precedence

- parentheses give an order between operators, but can make a formula quite unreadable
- we can use an order of precedence between operators in order to remove some parentheses without introducing ambiguity

$$
((p \wedge \neg q) \rightarrow(p \vee r)) \rightsquigarrow p \wedge \neg q \rightarrow p \vee r \rightsquigarrow \begin{aligned}
& p \wedge(\neg q \rightarrow p) \vee r \\
& \\
& ((p \wedge \neg q) \rightarrow p) \vee r \\
& (p \wedge \neg q) \rightarrow(p \vee r) \\
& \\
& \\
& p \wedge(\neg q \rightarrow p \vee r)
\end{aligned}
$$

Syntax of a first-order language

Literals

A literal is an atom or the negation of an atom

- $p, \neg p, q(a, f(1)), \neg q(a, f(1)), \quad \operatorname{cat}(g(x, y)), \neg \operatorname{cat}(g(x, y))$

Precedence

- parentheses give an order between operators, but can make a formula quite unreadable
- we can use an order of precedence between operators in order to remove some parentheses without introducing ambiguity

$$
\begin{array}{ll}
\\
((p \wedge \neg q) \rightarrow(p \vee r)) \rightsquigarrow p \wedge \neg q \rightarrow p \vee r \rightsquigarrow & p \wedge(\neg q \rightarrow p) \vee r \\
& (p \wedge \neg q) \rightarrow p) \vee r \\
(p \wedge \neg q) \rightarrow(p \vee r) \\
& p \wedge(\neg q \rightarrow p \vee r)
\end{array}
$$

Syntax of a first-order language

Literals

A literal is an atom or the negation of an atom

- $p, \neg p, q(a, f(1)), \neg q(a, f(1)), \quad \operatorname{cat}(g(x, y)), \neg \operatorname{cat}(g(x, y))$

Precedence

- parentheses give an order between operators, but can make a formula quite unreadable
- we can use an order of precedence between operators in order to remove some parentheses without introducing ambiguity
- $\{\neg, \forall, \exists\}$ higher precedence than $\{\wedge, \vee\}$
- $\{\wedge, \vee\}$ higher precedence than $\{\rightarrow, \leftrightarrow\}$

昭 the scope of \exists in $\exists y p(y) \wedge q(y)$ is only $p(y)$, not the whole formula

Syntax of a first-order language

Free and bounded variable occurrences

- an occurrence of the variable x is bounded in F if it is in the scope of a quantifier $\forall x$ or $\exists x$

$$
\exists x(p(1, x, y) \wedge q(x)) \wedge q(x)
$$

- otherwise, it is said to be free

$$
\exists x(p(1, x, y) \wedge q(x)) \wedge q(x)
$$

- a formula if closed if it contains no free occurrences
occurrences, not variable symbols, can be free or bounded

Syntax of a first-order language

Substitution

- $F(x)$ denotes a formula where x occurs free somewhere
- $F(x / t)$ denotes a formula where every free occurrence of x has been replaced by a term t
provided x does not occur free in the scope of any $\forall y$ or $\exists y$ for y occurring in t

$$
F \equiv s(x) \wedge(\forall y(p(x) \rightarrow q(y))) \quad F(x / f(y, y)) \text { cannot be done }
$$

$\forall x p(x)$ is the same as $\forall y p(y)$ (general result: $\forall x F(x) \leftrightarrow \forall y F(x / y)$)
if you are not sure about the name of variables, it is never a mistake to rename all the bounded occurrences of a variable

Syntax of a first-order language

Alternative notation

$$
\begin{array}{r|lr|l}
\wedge & \& & \rightarrow & \Rightarrow, \supset \\
\leftrightarrow & \Leftrightarrow, \equiv & \exists x F & \exists x . F, \exists x \mid F \\
\forall x F & \forall x . F, \forall x \mid F & p, q, r & P, Q, R
\end{array}
$$

More than first-order

- second-order logic: it allows quantification over functions and predicates (e.g., mathematical induction)

$$
\forall p(p(0) \wedge \forall k(p(k) \rightarrow p(s(k))) \rightarrow \forall n p(n))
$$

- higher-order logic allows quantification over functions and predicates of any order (as in functional programming)

Semantics of a first-order language

Interpretations

An interpretation \mathcal{I} is a pair (D, I), where $D \neq \emptyset$ is a set (the domain of the universe) and I maps symbols to individuals or functions

- constants: $I(a)=d \in D$
- variables: $I(x)=d \in D$
- functions: $I(f / n)=\mathcal{F}: D^{n} \mapsto D$

$$
\text { - } I\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\mathcal{F}\left(I\left(t_{1}\right), \ldots, I\left(t_{n}\right)\right)=\mathcal{F}\left(d_{1}, \ldots, d_{n}\right) \in D
$$

- predicates: $I(p / n)=\mathcal{P}: D^{n} \mapsto\{\mathbf{t}, \mathbf{f}\}$

$$
\text { - } I\left(p\left(t_{1}, \ldots, t_{n}\right)\right)=\mathcal{P}\left(I\left(t_{1}\right), \ldots, I\left(t_{n}\right)\right)=\mathcal{P}\left(d_{1}, \ldots, d_{n}\right) \in\{\mathbf{t}, \mathbf{f}\}
$$

(e) an interpretation assigns an element of D to any term, and a truth value to any predicate applied to terms

- \mathcal{P} is an n-ary relation $\mathcal{R}: \mathcal{P}\left(d_{1}, \ldots, d_{n}\right)=\mathbf{t}$ iff $\left\langle d_{1}, \ldots, d_{n}\right\rangle \in \mathcal{R}$

Semantics of a first-order language

Evaluation of a formula

Assigning a truth value to a formula, according to:

- the chosen interpretation of constants, functions and predicates
- the rules for evaluation (see also truth tables)

$$
\begin{array}{lll}
I(\neg F)=\mathbf{t} & \text { iff } & I(F)=\mathbf{f} \\
I(F \wedge G)=\mathbf{t} & \text { iff } & I(F)=I(G)=\mathbf{t} \\
I(F \vee G)=\mathbf{f} & \text { iff } & I(F)=I(G)=\mathbf{f} \\
I(F \rightarrow G)=\mathbf{f} & \text { iff } & I(F)=\mathbf{t} \text { and } I(G)=\mathbf{f} \\
I(F \leftrightarrow G)=\mathbf{t} & \text { iff } & I(F)=I(G) \\
I(\forall x F(x))=\mathbf{t} & \text { iff } & I(F(x / c))=\mathbf{t} * \text { for every constant } c \\
I(\exists x F(x))=\mathbf{t} & \text { iff } & I(F(x / c))=\mathbf{t}^{*} \text { for at least one constant } c
\end{array}
$$

* it is required that every element d of D is denoted by at least one constant
- I (instead of \mathcal{I}) will often denote an interpretation when D is clear

Semantics of a first-order language

Example (propositional): $(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow r$

- first interpretation: $I^{\prime}(p)=\mathbf{f}, I^{\prime}(q)=\mathbf{f}, I^{\prime}(r)=\mathbf{f}$

Semantics of a first-order language

Example (propositional): $(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow r$

- second interpretation: $I^{\prime \prime}(p)=\mathbf{f}, I^{\prime \prime}(q)=\mathbf{f}, I^{\prime \prime}(r)=\mathbf{t}$

Semantics of a first-order language

Example (propositional): $(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow r$

- this example only needs truth tables, for all possible interpretations

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \rightarrow q) \wedge(q \rightarrow r)$	$(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow r$
\mathbf{t}						
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}

Semantics of a first-order language

Example (first-order): $\forall x(m(a, x) \wedge p(x)) \rightarrow \forall y q(s(y))$

- first interpretation: $D=\{0,1,2,3, .$.
- $I(a)=0$
- $I(s(x))=\mathcal{S}(I(x))=$ the successor of $I(x)$
- $p(x)$ means that x is even
- $q(x)$ means that x is odd
- $m(x, y)$ means that $x<y$
- \mathcal{I} evaluates the formula to \mathbf{t} (try it!)

Semantics of a first－order language

Example（first－order）：$\forall x(m(a, x) \wedge p(x)) \rightarrow \forall y q(s(y))$

x	$s(x)$	x	$p(x)$	x	$q(x)$	$m y$			
胞		等定	t	呙	t	$\frac{x}{(2)}$			
						ξ	t	t	t
edig	8	ξ_{0}	t	管家	f		f	f	t
宽			t		t	宛	t	f	f

－and this evaluates to \mathbf{f}

Semantics of a first-order language

Satisfiable formulæ

An interpretation $\mathcal{I}=(D, I)$ satisfies a formula F on D iff $I(F)=\mathbf{t}$ (also written $\mathcal{I}(F)=\mathbf{t}$). In this case, \mathcal{I} is a model of F

- F is satisfiable (written $\operatorname{SAT}(F)$) iff it has at least one model
- F is unsatisfiable (written UNSAT (F)) iff it has no models
- that is, all interpretations are countermodels
- F is valid (written $\operatorname{VAL}(F)$) iff every interpretation is a model
- this is denoted by $\models F$, and amounts to say $\operatorname{UNSAT}(\neg F)$

With a set of formulæ $\left\{F_{1}, . ., F_{n}\right\}$:

- (D, I) satisfies $\left\{F_{1}, . ., F_{n}\right\}$ iff $I\left(F_{i}\right)=\mathbf{t}$ on D for every i
- $\left\{F_{1}, . ., F_{n}\right\}$ is satisfiable iff there is such an interpretation

Example: $\forall x(m(a, x) \wedge p(x)) \rightarrow \forall y q(s(y))$

- this formula is satisfiable but not valid

Logical consequence

Logical consequence

Given a set of formulæ $\Gamma=\left\{F_{1}, . ., F_{n}\right\}$ and a formula G over the same language, G is a logical consequence of Γ (written $\Gamma \models G)$ iff every interpretation satisfying Γ also satisfies G, or, equivalently, there is no interpretation which satisfies Γ but not G

Important (in some sense, it is a matter of convenience)

$$
\left\{F_{1}, . ., F_{n}\right\} \models G \quad \text { iff } \quad \vDash\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G
$$

To decide $\Gamma \models G$ can be very hard

We have to take all models of Γ and verify that they all satisfy G, or find a counterexample

Logical consequence

Example: $\{p \rightarrow(q \rightarrow r), p \wedge q\} \models r$
equivalent to $\models((p \rightarrow(q \rightarrow r)) \wedge(p \wedge q)) \rightarrow r$

p	q	r	$p \rightarrow(q \rightarrow r)$	$p \wedge q$	$(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q)$	G
\mathbf{t}						
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}

Logical consequence

Example: $\{p \rightarrow(q \rightarrow r), p \wedge q\} \models \neg r$
equivalent to $\models((p \rightarrow(q \rightarrow r)) \wedge(p \wedge q)) \rightarrow \neg r$

p	q	r	$p \rightarrow(q \rightarrow r)$	$p \wedge q$	$(p \rightarrow(q \rightarrow r)) \wedge(p \wedge q)$	G
\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}

Logical consequence

Example: $\{\exists x p(x), \exists x q(x)\} \models \exists x(p(x) \wedge q(x))$

- $D=\{1,2,3,4, .$.
- $p(x): x$ is even
- $q(x): x$ is odd

It is easy to see that this interpretation makes both premises true (indeed, there exist even numbers and there exist odd numbers), but does not satisfy the conclusion (no numbers are both even and odd)

$$
I(\exists x p(x))=\mathbf{t} \quad I(\exists x q(x))=\mathbf{t} \quad I(\exists x(p(x) \wedge q(x)))=\mathbf{f}
$$

Therefore, this deduction is incorrect
Example: $\{\exists x p(x), \exists x q(x)\} \models \exists x(p(x) \vee q(x))$

- this is, of course, a correct deduction (or valid, see a few slides above)

Syntax vs. semantics

Formal systems

A proof formal system consists of:

- a formal language (alphabet and rules for building formulæ)
- a set of logical axioms (i.e., valid formulæ, which do not require proof)
- a set of inference rules for proving new formulæ
- a definition of proof

Theories

A theory T is a formal system extended with a set Γ of non-logical axioms (i.e., formulæ taken for granted)

- if $\Gamma=\emptyset$, then T is the basic theory of the formal system

Syntax vs. semantics

Proofs

A proof of a formula G in a theory $T[\Gamma]($ written $T[\Gamma] \vdash G)$ is a finite sequence of formulæ such that

- each formula of the sequence is either
- a logical or non-logical axiom of the theory; or
- the result of applying an inference rule to previous formulæ in the sequence
- G is the last formula in the sequence

Theorems (of a theory)

- a theorem of the theory $T[\Gamma]$ is a formula for which there is at least one proof in $T[\Gamma]$

Syntax vs. semantics

Proof example: $T[p \rightarrow(q \rightarrow r), p \wedge q] \vdash r$

(1)	$p \rightarrow(q \rightarrow r)$
(2)	$\neg p \vee(\neg q \vee r)$
(3)	$(\neg p \vee \neg q) \vee r$
(4)	$\neg(p \wedge q) \vee r$
©	$p \wedge q \rightarrow r$
(3)	$p \wedge q$
(3)	r

first premise
interdefinition of \rightarrow, \neg and \vee on (1)
associativity on (2)
De Morgan on (3)
interdefinition of \rightarrow, \neg and \vee on © (4)
second premise modus ponens on $\boldsymbol{\Theta}$, , ©

Another approach to prove validity

Instead of looking at all the possible models of a formula, we exploited our knowledge of logical rules

- we also say that $\quad((p \rightarrow(q \rightarrow r)) \wedge(p \wedge q)) \rightarrow r \quad$ is a tautology

Syntax vs. semantics

Theorem (Validity)

Every theorem of T is logically valid: if $T \vdash G$ then $\models G$

Theorem (Completeness)

In a first-order theory T, all valid formulæ are theorems of T : if $\models G$ then $T \vdash G$

- the rest of the course will be basically about finding such formulæ

Theorem (Deduction)

- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\quad T \vdash\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G$

Syntax vs. semantics

Theorem (Validity)

Every theorem of T is logically valid: if $T \vdash G$ then $\models G$

Theorem (Completeness)

In a first-order theory T, all valid formulæ are theorems of T : if $\models G$ then $T \vdash G$

- the rest of the course will be basically about finding such formulæ

Theorem (Deduction)

- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\quad T \vdash\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G$
- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\quad \operatorname{VAL}\left(\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G\right)$

Syntax vs. semantics

Theorem (Validity)

Every theorem of T is logically valid: if $T \vdash G$ then $\models G$

Theorem (Completeness)

In a first-order theory T, all valid formulæ are theorems of T : if $\models G$ then $T \vdash G$

- the rest of the course will be basically about finding such formulæ

Theorem (Deduction)

- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\quad T \vdash\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G$
- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\quad \operatorname{VAL}\left(\left(F_{1} \wedge . . \wedge F_{n}\right) \rightarrow G\right)$
- $T\left[F_{1}, . ., F_{n}\right] \vdash G \quad$ iff $\operatorname{UNSAT}\left(F_{1} \wedge \ldots \wedge F_{n} \wedge \neg G\right)$

Syntax vs. semantics

Completeness vs. Incompleteness

- in theories where Gödel's first incompleteness theorem holds, the completeness theorem (also Gödel's) holds as well
- incompleteness: an effectively generated (whose set of axioms is a recursively enumerable set) theory which is powerful enough to express elementary arithmetic cannot be both consistent (there is no statement so that both the statement and its negation are provable from the axioms) and complete (for any statement in the axioms' language, either that statement or its negation is provable from the axioms)
- there is a statement which is true in the theory, but cannot be proven nor disproven (the Gödel sentence)
- but such statement is not a logical consequence of the theory (i.e., there are non-standard models, not isomorphic to the standard one, of the theory where it does not hold)

What you ABSOLUTELY have to get

Pay attention to these sentences (do they make sense?)

- the interpretation \mathcal{I} is satisfiable
- there exists a valid model for F
- a formula F makes an interpretation I false
- in order to prove that a formula is satisfiable, we need a true interpretation
- a literal is a negated or non-negated term
we are not asking if these sentences are true or false, only if they make sense

What you ABSOLUTELY have to get

Names and individuals

Names are only there to denote things

- there is no problem in taking

to be true if we are always consistent about it
- never forget that you are dealing with symbols!

What you ABSOLUTELY have to get

Types in first-order logic!

- a function of arity n will never have arity $m \neq n$ in the same formal system
- a predicate of arity n will never have arity $m \neq n$ in the same formal system
- a function is not a predicate
- a predicate is not a function

Equality

- the predicate $=/ 2$ is special in the sense that its meaning is often given for granted in a formal system (i.e., being equal means being the same element of the domain)
- anyway, we could choose to redefine it!

What you ABSOLUTELY have to get

Interpretations and imagination

When we want to prove that a formula is not valid, we need one interpretation which makes it false

- you can choose anything you want as D and I
- it's ok if we take that function $s / 1$ to map 45 to

What you ABSOLUTELY have to get

Implication

- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true
- that the left-hand side of an implication is false is enough to say that the implication is true

What you ABSOLUTELY have to get

Implication, cont.

- all red apples are good

$$
\forall x((\operatorname{apple}(x) \wedge \operatorname{red}(x)) \rightarrow \operatorname{good}(x))
$$

- there are apples which are red and good
- all apples are red and good
- there are no apples which are red but not good
- the set of good apples is a superset of the set of red apples
- whenever an apple is not good, it cannot be red
- whenever an apple is not good, it must be red
- there exists a yellow apple which is bad

$$
\exists x(\operatorname{apple}(x) \wedge \text { yellow }(x) \wedge \operatorname{bad}(x))
$$

- whenever an apple is yellow, it is bad
- there is at least an object which is bad and yellow, and is an apple
- every time an apple is good, it is not yellow

What you ABSOLUTELY have to get

Implication, cont.

- all red apples are good

$$
\forall x((\operatorname{apple}(x) \wedge \operatorname{red}(x)) \rightarrow \operatorname{good}(x))
$$

- there are apples which are red and good $\rightsquigarrow \mathrm{NO}$
- all apples are red and good $\rightsquigarrow \mathrm{NO}$
- there are no apples which are red but not good \rightsquigarrow YES
- the set of good apples is a superset of the set of red apples \rightsquigarrow YES
- whenever an apple is not good, it cannot be red \rightsquigarrow YES
- whenever an apple is not good, it must be red $\rightsquigarrow \mathrm{NO}$
- there exists a yellow apple which is bad

$$
\exists x(\operatorname{apple}(x) \wedge \text { yellow }(x) \wedge \operatorname{bad}(x))
$$

- whenever an apple is yellow, it is bad $\rightsquigarrow \mathrm{NO}$
- there is at least an object which is bad and yellow, and is an apple \rightsquigarrow YES
- every time an apple is good, it is not yellow $\rightsquigarrow \mathrm{NO}$

