
Computational Logic
Standardization of Formulæ

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 1 / 1

Satisfiability as deductionp

Our main observation
by the Validity, Completeness and Deduction Theorems:

T [F1, .., Fn] |= G iff T [F1, .., Fn] ` G iff UNSAT (F1 ∧ .. ∧ Fn ∧ ¬G)

+ this means that we can reduce a problem of deduction (whether a formula
can be derived by a set of premises) to a problem of satisfiability

+ also, satisfiability can tell us if a set of sentences is contradictory

the techniques we are going to see deal with satisfiability

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Satisfiability as deductionp

An example: how to obtain documents in Spain...

in order to get the Health Care number (número de Seguridad Social), I was
told I needed a regular job contract

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Satisfiability as deductionp

An example: how to obtain documents in Spain...

in order to get the Health Care number (número de Seguridad Social), I was
told I needed a regular job contract

when I was about to sign the contract, they told me I needed the Health Care
number

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Satisfiability as deductionp

An example: how to obtain documents in Spain...

in order to get the Health Care number (número de Seguridad Social), I was
told I needed a regular job contract

when I was about to sign the contract, they told me I needed the Health Care
number

¿
� �
�?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Satisfiability as deductionp

An example: how to obtain documents in Spain...

in order to get the Health Care number (número de Seguridad Social), I was
told I needed a regular job contract

when I was about to sign the contract, they told me I needed the Health Care
number

¿
� �
�?

how can we write it down formally?

constants: hcn, jc, 0 (initial state)
functions: f /1 (next state)
predicates:

wants/1 (the document I want)
has/2 (the document I have in a certain state)
gets/2 (the document I get in a certain state)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Skolem normal formp

Our goal: simplifying formulæ

We want to obtain, by means of a series of transformations, a formula which is
easier to deal with automatically, yet retains certain properties of the original one

this is called standardization, and produces first the Skolem Normal Form,
then the Clause Form

Running example

∀y ((∃xp(x , f (y))→ (q(y) ∧ q(z))) ∨ ¬∀wr(g(w), y))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

How to get the Skolem Normal Form (SNF)

1 all quantifiers to the head of the formula (prenex form)

move quantifiers by means of equivalence rules

2 no free occurrences of variables

do the existential closure

3 the matrix of the formula is in conjunctive normal form (CNF): a conjunction
of disjunctions of literals

transform the formula by means of equivalence rules

4 only universal quantifiers

remove existential quantifiers by introducing Skolem functions

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

What does this transformation preserve?

it preserves the satisfiability

but not all the models: the result is not semantically equivalent to the original

Preservation

Take a transformation from F to F ′

to preserve the semantics means that, for every interpretation I, I is a model
of F iff it is a model of F ′

∀xp(x) is semantically equivalent to ¬∃x¬p(x)

to preserve the satisfiability means that there exists a model I for F iff there
exists a model I ′ (probably not the same) for F ′

SAT (∃xp(x)) iff SAT (p(a))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

1 Prenex form: all quantifiers at the beginning

Getting a prenex form relies on the following rules for moving quantifiers towards
the head:

renaming of bounded occurrences (if y does not occur free in F)
` ∀xF (x)↔ ∀yF (x/y) ` ∃xF (x)↔ ∃yF (x/y)

interdefintion of quantifiers
` ¬∀xF (x)↔ ∃x¬F (x) ` ¬∃xF (x)↔ ∀x¬F (x)

connectives vs. quantifiers (if x does not appear free in the other formula)
` ∀xF ∧ G ↔ ∀x(F ∧ G) ` (∀xF → G)↔ ∃x(F → G)
` ∃xF ∧ G ↔ ∃x(F ∧ G) ` (∃xF → G)↔ ∀x(F → G)
` ∀xF ∨ G ↔ ∀x(F ∨ G) ` (F → ∀xG)↔ ∀x(F → G)
` ∃xF ∨ G ↔ ∃x(F ∨ G) ` (F → ∃xG)↔ ∃x(F → G)

connectives vs. quantifiers (more)
` (∀xF ∧ ∀xG)↔ ∀x(F ∧ G) ` (∃xF ∨ ∃xG)↔ ∃x(F ∨ G)

+ there are only these two, not the dual ones

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

Lemma
The prenex form of a formula always exists, although it could be non-unique

Proof.
how could we prove it?

Lemma

Every formula F is equivalent to its prenex form(s):

` F ↔ Prenex(F)

Proof.

easy because all steps leading to Prenex(F) are equivalencies

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

2 Existential closure: no more free variable occurrences
Variables which occur free in the formula are existentially quantified

∀y(x ∧ q(y)) ∃x(∀y(x ∧ q(y)))
∀y∃x(p(x) ∧ q(y)→ r(f (z), x)) ∃z∀y∃x(p(x) ∧ q(y)→ r(f (z), x))

Lemma

the closure does not affect satisfiability: F (x) is satisfiable iff ∃xF (x) is

by extension, SAT (F) iff SAT (∃ − closure(F))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

3 Conjunctive normal form (CNF): the matrix becomes
a conjunction of disjunctions of literals

connectives
` (F → G)↔ (¬F ∨ G)
` (F ↔ G)↔ (F → G) ∧ (G → F)

De Morgan
` ¬(F ∧ G)↔ ¬F ∨ ¬G ` ¬(F ∨ G)↔ ¬F ∧ ¬G

distributivity of ∧ and ∨
` F ∧ (G ∨ H)↔ (F ∧ G) ∨ (F ∧ H)
` F ∨ (G ∧ H)↔ (F ∨ G) ∧ (F ∨ H)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

Lemma

The conjunctive normal form of a (quantifier-free) formula always exists

Proof.

(exercise)

Lemma

For every formula F , ` F ↔ CNF (F)

Proof.

easy because all steps leading to CNF (F) are equivalencies

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

4 ∃-elimination: no more existential quantifiers

An existential quantifier can be removed by replacing the variable it bounds by a
Skolem function of the form f (x1, ..xn), where:

f is a fresh function symbol

x1, .., xn are the variables which are universally quantified before the quantifier
to be removed

∀x∃y(p(x)→ ¬q(y)) ∀x(p(x)→ ¬q(f (x)))
∃x∀z(q(x , z) ∨ r(a, x)) ∀z(q(b, z) ∨ r(a, b))
∃x∀y∃z(p(x) ∧ q(y)→ r(f (z), x)) ∀y(p(a) ∧ q(y)→ r(f (g(y)), a))

Lemma

A formula F is satisfiable iff Skolem(F) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

Definition

Q.M = ∃ − closure(Prenex(F))
SNF (F) = Skolem(Q.CNF (M)) Q.M = [quantifiers].[matrix]

Theorem

F is satisfiable iff SNF (F) is

Proof.

¶ F is satisfiable iff Prenex(F) is

· Prenex(F) is satisfiable iff ∃ − closure(Prenex(F)) is

¸ M is satisfiable iff CNF (M) is

¹ Q.M is satisfiable iff Q.CNF (M) is (from ¸)

º Q.CNF (M) is satisfiable iff Skolem(Q.CNF (M)) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Skolem normal formp

Conclusion
we are basically interested in satisfiability

SNF (F) exists for every F

SNF (F) preserves satisfiability

+ therefore, we can restrict ourselves to only formulæ in Skolem normal form

the Skolem normal form is named after the Norwegian mathematician Thoralf
Albert Skolem (1887 - 1963)

it was introduced in this context by Martin Davis and Hilary Putnam in 1960

Advantages

no internal quantifiers

only universal quantifiers, only in the head

no free variable occurrences

only ∧ and ∨, suitably arranged

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Clause formp

It is easier to work on the Clause Form CF (F)

clause: disjunction of literals

the clause form of F is the set of clauses of SNF (F), where the set means
conjunction, and all variables are universally quantified

F = ∀x(p(x) ∧ ∀y(¬q(y)→ r(z , x)))
SNF (F) = ∀x∀y(p(x) ∧ (q(y) ∨ r(a, x)))

CF (F) = {p(x), q(y) ∨ r(a, x)}

Theorem

F is satisfiable iff CF (F) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Clause formp

Clause form of a deduction

A deduction [F1, .., Fn] ` G is correct iff F1 ∧ .. ∧ Fn ∧ ¬G is not satisfiable

get the clause form of every Fi

get the clause form of ¬G

+ important: we cannot use the same Skolem functions in different formulæ of
the deduction (always new names)!

+ more important: CF (¬G), not ¬(CF (G))!!! (ex. ∃xp(x))

compute the union of all sets of clauses

check the satisfiability

+ this is what we should do when asked to verify that a deduction of a formula
from some premises is correct

+ we will see several methods for proving the unsatisfiability of a clause set

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Clause formp

Example: [∃xf (x), ∃xg(x)] ` ∃x(f (x) ∧ g(x))

CF (∃xf (x)) = {f (a)}
CF (∃xg(x)) = {g(b)}
CF (¬(∃x(f (x) ∧ g(x)))) = {¬f (x) ∨ ¬g(x)}

Here, there exists an interpretation which is a model:

D = {0, 1}
I (a) = 0

I (b) = 1

I (f (a)) = F(I (a)) = F(0) = t

I (g(b)) = G(I (b)) = G(1) = t

I (f (b)) = F(I (b)) = F(1) = f

I (g(a)) = G(I (a)) = G(0) = f

therefore, the deduction is not correct

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

