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Motivationp

The theorem
Herbrand’s theorem is the basis for most proof techniques in automatic theorem
proving (ATP)

How is it useful?

in order to decide the (un)satisfiability of a formula F , it is enough to study
its Herbrand interpretations

it is necessary to have an ordered and exhaustive way to produce the
Herbrand interpretations

this can be done by means of semantic trees
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Definition

Let HB(F ) = {A1, A2, A3, ..} be the Herbrand base of a formula F in clause form:
a semantic tree for F is a binary tree where

every level of the tree corresponds to a ground atom of HB(F )

the two links from a node at level i − 1 to nodes at level i are labeled, resp.,
with Ai and ¬Ai

A1 ¬A1

A2 ¬A2 A2 ¬A2

A3 ¬A3 A3 ¬A3 A3 ¬A3 A3 ¬A3
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Completeness, failure nodes and closed trees

a semantic tree is complete if every path from the root to a leaf contains Ai

or ¬Ai for all Ai ∈ HB(F )

a complete tree for F contains all Herbrand interpretations of F

given a node N, I (N) is the set of all literals which label the path from the
root to N

+ I (N) partially represents a Herbrand interpretation

a node N is a failure node (denoted by z) if I (N) makes some ground
instance of some clause false, and I (N ′) for any predecessor N ′ of N does not

+ that is, I (N ′) does not falsify any ground instance of any clause

a tree is closed iff all paths from the root to a leaf contain a failure node

a closed tree has level n if n is the maximum length of paths from the root to
a failure node
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Example: F = {¬q(x) ∨ r(x), p(x) ∨ ¬r(x), ¬p(x)}
H(F ) = {a} HB(F ) = {p(a), q(a), r(a)}

p(a) ¬p(a)

q(a) ¬q(a) q(a) ¬q(a)

r(a) ¬r(a) r(a) ¬r(a) r(a) ¬r(a) r(a) ¬r(a)

cm cm cm cm cm cm cm m

z

z z z

z = failure node, m = model, cm = countermodel
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Example: F = {p(y), q(a) ∨ ¬p(f (x)), ¬q(x)}
H(F ) = {f n(a) | n ≥ 0}
HB(F ) = {p(t) | t ∈ H(F )} ∪ {q(t) | t ∈ H(F )}
every Herbrand interpretation falsifies some instance of some clause, so that
F is unsatisfiable

p(a) ¬p(a)
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Example: F = {p(y), q(a) ∨ ¬p(f (x)), ¬q(x)}
H(F ) = {f n(a) | n ≥ 0}
HB(F ) = {p(t) | t ∈ H(F )} ∪ {q(t) | t ∈ H(F )}
every Herbrand interpretation falsifies some instance of some clause, so that
F is unsatisfiable
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Semantic trees (Robinson ’68, Kowalski-Hayes ’69)p

Note on cardinalities
We want to use semantic trees in order to enumerate Herbrand interpretations

yet, how many interpretations can we have?

how it is possible to enumerate them?
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Herbrand’s theoremp

Lemma (König’s Lemma)

In an infinite tree with finite branching (i.e., such that every node has a finite
number of children), there must exist an infinite path from the root

Proof.

(typical result in tree theory)
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Herbrand’s theoremp

Theorem
C is unsatisfiable iff its complete semantic tree is closed

Proof.
C is unsatisfiable

↔ all Herbrand interpretations make C false

↔ all paths from the root contain a failure node

↔ the tree is closed
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Herbrand’s theoremp

Lemma
A complete semantic tree is closed iff a finite tree is obtained by pruning all
successors of failure nodes

Proof (→).

¶ the complete semantic tree is closed

· suppose the pruned tree were not finite

¸ then, by König’s lemma, there exists an infinite path

¹ such infinite path would not have any failure nodes

º the tree would not be closed: contradiction between ¶ and ·

» the pruned tree is finite

Proof (←).

(easy)
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Herbrand’s theoremp

Theorem (Herbrand’s theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of
C clauses which is unsatisfiable

Proof (→).

¶ C is unsatisfiable

· there exists a finite semantic tree for C whose every leaf is a failure node (by
¶ and the above results)

¸ every path falsifies at least one ground instance (by ·)

¹ since the tree is finite, collecting one (falsified) instance for every failure node
gives a finite set S

º all Herbrand interpretations falsify some instances in S

» such finite set S of instances is unsatisfiable (by º)

(why Herbrand interpretations of C are enough to prove UNSAT (S)?)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1



Herbrand’s theoremp

Theorem (Herbrand’s theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of
C clauses which is unsatisfiable

Proof (←).

¶ there exists an unsatisfiable finite set S of ground instances of C clauses

· suppose C be satisfiable: then, some Herbrand interpretation would verify
every instance of every clause

¸ in particular, such interpretation would verify all instances in S

¹ S would be satisfiable (by ¸): contradiction between ¶ and ·

º C is unsatisfiable (by ¹)
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Herbrand’s theoremp

Example: C = {p(y), q(a) ∨ ¬p(f (x)), ¬q(x)}

z
1

q(a) ¬q(a)

p(f (a)) ¬p(f (a))

z
2

p(f (a)) ¬p(f (a))

z
3...

... ...

... ...

... ...

...

in 1, the instance ¬q(a) of ¬q(x) is falsified

in 2, the instance q(a) ∨ ¬p(f (a)) of q(a) ∨ ¬p(f (x)) is falsified

in 3, the instance p(f (a)) of p(y) is falsified

→ this set of ground instances is unsatisfiable

→ Herbrand’s theorem guarantees that C is unsatisfiable
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Herbrand’s theoremp

The theorem suggests a method

Given a set C of clauses, generate its ground instances incrementally, and put
them in a set until the whole set becomes unsatisfiable:

B = ∅;
while (B is satisfiable)

b = new-instance(C);
B = B ∪ {b};

Implementations of Herbrand’s theorem

It is necessary to choose a strategy for generating instances

method of Gilmore (1960)

method of Davis-Putnam (1960)

resolution method by Robinson (1965)
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