
Computational Logic
Implementations of Herbrand’s Theorem

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 1 / 1

Introductionp

General idea
we have seen that, in order to prove the unsatisfiability of a set of clause, it is
enough to find an unsatisfiable finite set of ground instances of the clauses

practically thinking, we look for a method to generate ground instances of
the clauses and prove their unsatisfiability

level-saturation: generate incrementally sets Si of ground instances by going
through the levels H0, H1, .., Hk , .. of the Herbrand Universe

for every set Si , transform it in order to find a contradiction, i.e, to prove
that it is unsatisfiable

if the contradiction cannot be found, then generate new instances and repeat

this method relies on the contradiction lemma

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Introductionp

Generation

the technique used for checking SAT (S) is independent of the technique for
generating S

we can suppose that all methods presented in this section generate S in the
same way (with level-saturation)

Complexity

note that deciding SAT (S) is the well-known NP-complete SAT problem

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Introduction (side-topic)p

Where wa are, where we are going to. . .

in the field of propositional logic (no variables)

to decide the satisfiability of a propositional formula is the SAT problem,
which is extremely important in computer science

verification of circuits and processors
timetables, scheduling, calendars, optimization. . .
properties of programs (e.g., termination or the correctness of some
operations)

due to this, there has been so far so much research on algorithms for solving
SAT:

because it has so many applications http://www.satlive.org

and also because of NP-completeness

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Introduction (side-topic)p

Example: the null value in Java

in → a = new MyClass();
c = b;out → ...
a.f = 1;
c.g = d.m(2);

the goal is to guarantee that a NullPointerException will never (not in
any possible execution) be thrown

(without explicit controls as if (x!= null) {...})
this can be formalized by means of propositional formulæ, where one or more
propositions correspond to every program variable

vin, vout vpp = t if we know that v is not null at pp
vpp = f if we do not know whether v is null or not at pp

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Introduction (side-topic)p

And if we were in first-order
logic programming

automated theorem proving

rewriting systems

artificial intelligence

semantic web (description logics)

verification of criptographic protocols

Therefore
Computational logic proposes automatic tecniques for efficiently solving some of
these problems

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Back to the introductionp

Lemma (contradiction)

A formula F is unsatisfiable iff it is possible to derive a contradiction from it:
[F] ` G ∧ ¬G

Proof.

¶ [F] ` G ∧ ¬G iff ` F → G ∧ ¬G (deduction theorem)

· ` F → G ∧ ¬G iff, for every interpretation, (1) I (F) = f; or (2) I (F) = t and
I (G ∧ ¬G) = t

¸ I (G ∧ ¬G) = f for every I , so that ` F → G ∧ ¬G iff I (F) = f for every I

¹ ` F → G ∧ ¬G iff F is unsatisfiable (by ¸)

º [F] ` G ∧ ¬G iff F is unsatisfiable (by ¶ and ¹)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Back to the introductionp

Using level-saturation: for a set of clauses C
i = 0;
S = ∅;
while (SAT (S))

Hi = the i-th level of H(C)
X = {C ′ | C ∈ C and C ′ is obtained from C

by replacing variables with terms in Hi};
S = S ∪ X ;
i = i + 1;

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Back to the introductionp

The general picture

three methods for checking satisfiability

Gilmore
Davis-Putnam
ground Resolution

all of them use level-saturation

the difference is how they decide the satisfiability of ground instances

that is, how they try to deduce a contradiction

first-order C

ground SAT (S)

saturation

SAT (S) SAT (S) SAT (S)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Gilmore’s method (1960)p

The techniques

instances are generated by level-saturation

a method for verifying SAT (S) is needed

Gilmore chose one: multiplication

Multiplication

put S in Disjunctive Normal Form (DNF (S))

disjunction of conjunctions of literals, ex. (p ∧ q) ∨ r ∨ (q ∧ ¬r)

search for a contradiction in every conjunction

a: if the contradiction is found everywhere, then the set is unsatisfiable

b: if there exists a conjunct which does not contain a contradiction (see lemma
Gil-1), then the set is satisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

Lemma (Gil-1)

Given a conjunction F of propositions, a contradiction can be derived iff it is a
subformula of F

Lemma (DNF (F))

For every (quantifier-free) formula F , DNF (F) exists and is equivalent to F

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

Theorem

A propositional formula F is unsatisfiable iff DNF (F) contains a contradiction in
every conjunct

Proof.

¶ F is unsatisfiable iff DNF (F) is (Lemma DNF (F))

· DNF (F) = D1 ∨ .. ∨ Dn is unsatisfiable iff we can derive a contradiction from
it (contradiction lemma)

¸ DNF (F) is unsatisfiable iff every Di (conjunction of literals) is

¹ DNF (F) is unsatisfiable iff every Di contains a contradiction (Lemma Gil-1)

¹ F is unsatisfiable iff every Di of DNF (F) contains a contradiction (by ¶ and
¹)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

How to compute DNF (F)

Not surprisingly, we use the same rules as for CNF (F), but we often conceptually
change the direction

connectives
` (F → G)↔ (¬F ∨ G)
` (F ↔ G)↔ (F → G) ∧ (G → F)

De Morgan
` ¬(F ∧ G)↔ ¬F ∨ ¬G ` ¬(F ∨ G)↔ ¬F ∧ ¬G

distributivity of ∧ and ∨
` F ∧ (G ∨ H)↔ (F ∧ G) ∨ (F ∧ H)
` F ∨ (G ∧ H)↔ (F ∨ G) ∧ (F ∨ H)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

Example (null pointers)

in → a = new MyClass();
c = b;out → ...
a.f = 1;
c.g = d.m(2);

what the first two lines do: F = aout ∧ (bin → (bout ∧ cout)) ∧ (din → dout)

some specific input information (saying that b and d are not null at the
beginning): G = bin ∧ din

the correctness condition (that no exceptions are thrown):
H = aout ∧ cout ∧ dout

the deductive structure:

{F , G} ` H (iff UNSAT ({F , G ,¬H}))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

Example (null pointers)

aout ∧ (bin → (bout ∧ cout)) ∧ (din → dout) ∧ bin ∧ din ∧ (¬aout ∨ ¬cout ∨ ¬dout)

DNF (F ∧ G ∧ ¬H) = (aout ∧ bin ∧ din ∧ ¬bin ∧ ¬din ∧ ¬aout)
∨ (aout ∧ bin ∧ din ∧ ¬bin ∧ ¬din ∧ ¬cout)
∨ (aout ∧ bin ∧ din ∧ ¬bin ∧ ¬din ∧ ¬dout)
∨ (aout ∧ bin ∧ din ∧ ¬bin ∧ dout ∧ ¬aout)
∨ (aout ∧ bin ∧ din ∧ ¬bin ∧ dout ∧ ¬cout)
∨ (aout ∧ bin ∧ din ∧ ¬bin ∧ dout ∧ ¬dout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ ¬din ∧ ¬aout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ ¬din ∧ ¬cout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ ¬din ∧ ¬dout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ dout ∧ ¬aout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ dout ∧ ¬cout)
∨ (aout ∧ bin ∧ din ∧ bout ∧ cout ∧ dout ∧ ¬dout)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Gilmore’s method (1960)p

Another example

C1 = p(x , f (y)) ∨ ¬q(x)
C2 = q(a)
C3 = ¬p(a, z)

S0 = { p(a, f (a)) ∨ ¬q(a), q(a), ¬p(a, a) }

DNF (S) = (p(a, f (a)) ∧ q(a) ∧ ¬p(a, a)) ∨ (¬q(a) ∧ q(a) ∧ ¬p(a, a))

S1 =

p(a, f (a)) ∨ ¬q(a),
p(f (a), f (a)) ∨ ¬q(f (a)),
p(a, f (f (a))) ∨ ¬q(a),

p(f (a), f (f (a))) ∨ ¬q(f (a)),
q(a),
¬p(a, a),
¬p(a, f (a))

DNF (S) = . . .

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

The method of Davis-Putnam (1960)p

General idea
generate each set S of ground instances by saturation

simplify S , getting a new set S ′ by means of four rules, until a contradiction
is detected

if all possible rules have been applied and no contradiction is detected, then
S is satisfiable

The rules
1 tautology rule

2 one-literal rule

3 pure-literal rule

4 splitting rule

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

1 Tautology rule

Given a set of ground instances, delete all instances which are tautologies

Example

S = {p, q, r ∨ ¬r}
S ′ = {p, q}

clearly, S is satisfiable iff S ′ is

Lemma (tautology rule)

Since tautologies are always true, eliminating them does not affect satisfiability:
the remaining set S ′ is satisfiable iff S is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

2 One-literal rule

If there is a unit instance L in S (i.e., a ground instance which only consists of the
literal L), then S ′ can be obtained iteratively by

deleting all instances in S which contain L

deleting ¬L from the instances in S which contain ¬L

Example

S = { ¬p ∨ ¬u, p ∨ q ∨ ¬r , p ∨ ¬q, ¬p, r , u } [rule on ¬p]
{ q ∨ ¬r , ¬q, r , u } [rule on ¬q]
{ ¬r , r , u } [rule on ¬r]

S ′ = { �, u }

the empty clause � (which can be obtained from r or ¬r) means that there is a
contradiction: S ′ is unsatisfiable (like S)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Lemma (one-literal rule)

S = {L, (L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is
unsatisfiable iff S ′ = {G1, .., Gm, H1, .., Hp} is

provided neither L nor ¬L occur in any Hk

Proof (→).

¶ S is unsatisfiable

· suppose {G1, .., Gm, H1, .., Hp} is not: then, there exists an interpretation I
which makes all Gj and Hk true

¸ if I also verifies L (it is always possible to find such I), then it verifies all
L ∨ Fi , so that it satisfies the original set

¹ contradiction ·, ¸: {G1, .., Gm, H1, .., Hp} is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Lemma (one-literal rule)

S = {L, (L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is
unsatisfiable iff S ′ = {G1, .., Gm, H1, .., Hp} is

provided neither L nor ¬L occur in any Hk

Proof (←).

¶ {G1, .., Gm, H1, .., Hp} is unsatisfiable

· suppose S is not: then, there exists an interpretation I which makes L and all
L ∨ Fi , ¬L ∨ Gj and Hk true

¸ I makes ¬L false, then, since it makes ¬L ∨ Gj true, it must make Gj true

¹ I satisfies {G1, .., Gm, H1, .., Hp} (by ¸)

º contradiction ·, ¹: S is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

3 Pure-literal rule

If S contains a pure literal L, then S ′ can be obtained by deleting all instances
which contain L

a literal is pure if it only occurs with one sign (positive or negative)

Example

p is pure is S

S = { p ∨ q, p ∨ ¬q, r ∨ q, r ∨ ¬q } [rule on p]
{ r ∨ q, r ∨ ¬q } [rule on r]

S ′ = { } = ∅

S ′ is satisfiable (like S)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Lemma (pure-literal rule)

S = {L ∨ F1, .., L ∨ Fn, .., G1, .., Gm} is unsatisfiable iff {G1, .., Gm} is

provided L is pure and does not appear in any Fj or Gk

Proof (→).

¶ S is unsatisfiable

· suppose {G1, .., Gm} is not: then, there exists I which makes all Gj true

¸ I can be found which makes L true: therefore, it satisfies all instances L ∨ Fj ,
and therefore S

¹ contradiction ·, ¸: {G1, .., Gm} is unsatisfiable

Proof (←).

easy because {G1, .., Gm} is a subset of the clauses of S

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

4 Splitting rule

If S takes the form {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp},
then two sets S ′ and S ′′ can be obtained as

S ′ = {F1, .., Fn, .., H1, .., Hp}
S ′′ = {G1, .., Gm, .., H1, .., Hp}

+ this rule can be applied on every S , but before we have to try with one-literal
or pure-literal

Example

S = { p ∨ ¬q, ¬p ∨ q, q ∨ ¬r , ¬q ∨ ¬r }

S ′ = { ¬q, q ∨ ¬r , ¬q ∨ ¬r }
S ′′ = { q, q ∨ ¬r , ¬q ∨ ¬r }

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Lemma (splitting rule)

S = {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is unsatisfiable
iff both S ′ = {F1, .., Fn, .., H1, .., Hp} and S ′′ = {G1, .., Gm, .., H1, .., Hp} are

provided neither L nor ¬L appear in any Fi , Gj or Hk

Proof (→).

¶ S is unsatisfiable

· suppose at least one between S ′ and S ′′ is not: therefore, there exists I
which make all Hk true, and either all Fi or all Gj

¸ if I makes all Fi true, then it makes all L ∨ Fi true. I can be taken which
makes L false, so that it makes all ¬L ∨ Gj (and S) true

¹ dual reasoning, in the case I makes all Gj true

º in both cases, contradiction (·, ¸ or ·, ¹): both S ′ and S ′′ are unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Lemma (splitting rule)

S = {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is unsatisfiable
iff both S ′ = {F1, .., Fn, .., H1, .., Hp} and S ′′ = {G1, .., Gm, .., H1, .., Hp} are

provided neither L nor ¬L appear in any Fi , Gj or Hk

Proof (←).

¶ both S ′ and S ′′ are unsatisfiable

· suppose S is not: therefore, there exists I which makes all L ∨ Fi , ¬L ∨ Gj

and Hk true

¸ if I makes L true, then it makes ¬L false: since it makes ¬L ∨ Gj true, it
must make Gj true, so that it satisfies S ′′

¹ dual: if I makes L false, then it satisfies S ′

º in both cases, contradiction (·, ¸ or ·, ¹): S is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The method of Davis-Putnam (1960)p

Procedure DP: given S , transform it as follows (YES = satisfiable)

while (S 6= ∅)
if (tautology rule can be applied) apply tautology rule
else

while (one-literal rule can be applied) apply one-literal rule
if (S contains literals L and ¬L) return NO
if (S = ∅) return YES
while (pure-literal rule can be applied) apply pure-literal rule
if (S contains literals L and ¬L) return NO
if (S = ∅) return YES
apply splitting rule, apply DP to both S ′ and S ′′

if (the result is NO for both S ′ and S ′′) return NO
else return YES

return YES

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

The Resolution method of Robinsonp

Our inspiration

In the following part of this section, and the next one, we will (sometimes literally)
refer to a couple of papers by John Alan Robinson:

[R63] Theorem-Proving on the Computer. Journal of the ACM, April 1963,
163-174.

[R65] A Machine-Oriented Logic Based on the Resolution Principle. Journal
of the ACM, January 1965, 23-41.

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

General idea
Obtaining new instances by deduction from the original set C, such that C is found
to be unsatisfiable whenever both a literal and its negation are deduced

Ground resolution rule
Given two instances L ∨ C1 and ¬L ∨ C2, where L is a literal, it is possible to
deduce a new instance C1 ∨ C2 which is called the resolvent

(Vintage version of the rule)

if C and D are two ground clauses, and L ⊆ C , M ⊆ D are two singletons
(unit sets) whose respective members form a complementary pair, then the
ground clause (C \L)∪ (D \M) is called a ground resolvent of C and D [R65]

if S is any set of ground clauses, then the ground resolution of S , denoted by
R(S), is the set of ground clauses consisting of the members of S together
with all ground resolvents of all pairs of members of S [R65]

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Unsatisfiability

By applying the rule, it is possible to derive a contradiction when the set is
unsatisfiable: such contradiction comes from applying resolution to L and ¬L,
which generates the empty clause �

Why ground resolution

as a specific method for testing a finite set of ground clauses for satisfiability,
the method of Davis-Putnam would be hard to improve on from the point of
view of efficiency [R65]

now we give another method, far less efficient than theirs, which plays only a
theoretical role in our develpment, ... [R65]

+ on the other hand, the reason for showing ground resolution is its extension
to general resolution

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Remark: Idempotence

In order to get a contradition whenever the set is unsatisfiable, it is necessary to
consider idempotence L ∨ L↔ L

L ∨ L ¬L ∨ ¬L

L ∨ ¬L

L ¬L

�

Extended resolution
Given two instances L ∨ .. ∨ L ∨ C1 and ¬L ∨ .. ∨ ¬L ∨ C2, it is possible to deduce
a resolvent C1 ∨ C2

Applying this extended rule is called a resolution step over L with resolvent
C1 ∨ C2

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Advantages

The deduction system only consists of one rule

it is interesting that (as far as the author is aware) no other complete system
of first-order logic has consisted of just one inference principle [R65]

Method: given a set S of ground instances

X = S
repeat

generate by resolution steps all possible resolvents from the elements of X :
let R(X) be the set of resolvents
if (� ∈ R(X)) then STOP: UNSAT (S)
if (R(X) v X) then STOP:

all resolvents have already been generated, so that SAT (S)
X = R(X) ∪ X

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Lemma (Res-1)

Let m be a node of the semantic tree of a set S, and m′ and m′′ be its direct
successors, both failure nodes. The clauses S ′ and S ′′ which become false in m′

and m′′ have a resolvent which is false in m

Proof.

¶ m′ and m′′ are at a level n in the tree, corresponding to the atom An; An is
taken to be true in m′ and false in m′′

· I (m) is the partial interpretation in m: I (m′) = I (m) ∪ {An} and
I (m′′) = I (m) ∪ {¬An}

¸ S ′ and S ′′ take the form, resp., ¬An ∨ S ′
n and An ∨ S ′′

n , where neither
between ¬An and An appear in S ′

n or S ′′
n

¹ I (m) makes both S ′
n and S ′′

n false, since it is not affected by An (by ¸)

º S ′
n ∨ S ′′

n , which is a resolvent of S ′ and S ′′, is false in m (by ¹)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Lemma (Res-2)

Let A be a closed semantic tree where the level of failure nodes is ≤ n. If m′ is a
failure node at level n, then its brother m′′ is also a failure node

Proof.
1 since the tree is closed, the path through m′′ contains a failure node

2 the failure node cannot be after m′′, since the maximum level of failure nodes
is n, which is the level of m′′

3 since m′ is a failure node, its predecessors cannot be failure nodes

4 the predecessors of m′′ are the same as those of m′, so that, by ¸, they
cannot be failure nodes

5 by ¶, · and ¹, m′′ must be a failure node

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Lemma (Res-3)

Let S be an unsatisfiable set of instances which has a closed semantic tree of level
n. Then, there exists a set R of resolvents from S such that the semantic tree of
S ∪ R is closed and has level n − 1

Proof.
¶ every failure node at level n has a brother which is also a failure node

(Lemma Res-2)

· every pair of failure nodes has a resolvent r which is false in their predecessor
at level n − 1 (Lemma Res-1)

¸ let R = {r | r is the resolvent of two failure nodes at level n}
¹ S ∪ R has a closed tree of level n − 1 (by ¸)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Theorem (Res)

A set S of ground instances is unsatisfiable iff it is possible to derive � from it by
resolution

Proof (→).

If S is unsatisfiable, then its semantic tree is closed and finite (if pruned at failure
nodes). Let n be the maximum level of failure nodes:

n = 1: there are two failure nodes, corresponding to the atom A1, where A1

and ¬A1 become false, respectively. The resolvent is �
n > 1: there exists a set R of resolvents from S such that the semantic tree
of S ′ = R ∪ S is closed and has level n − 1 (Lemma Res-3)

by induction, � can be derived from S ′

however, since S ′ was derived from S by resolution, � can be derived from S

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Theorem (Res)

A set S of ground instances is unsatisfiable iff it is possible to derive � from it by
resolution

Proof (←).

¶ S ` � by resolution (where � comes as a resolvent of some L and ¬L)

· S |= � by ¶ and validity of resolution

¸ � is false in every interpretation

¹ S is false in every interpretation (by ¸ and logical consequence)

º S is unsatisfiable (by ¹)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

General method
generate all possible sets of ground instances

for every set, apply ground resolution

the first step is very inefficient

the major combinatorial obstacle to efficiency for level-saturation procedures is
the enormous rate of growth of the finite sets Hi and HBi as i increases [R65]

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Example from [R63]

arises from seeking to prove the existence of a right identity element in any algebra
closed under a binary associative operation having left and right solutions x and y
for all equations x ·a = b and a·y = b whose coefficient a and b are in the algebra

C = { ¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(x , v , w) ∨ p(u, z , w),
¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(u, z , w) ∨ p(x , v , w),

p(g(x , y), x , y),
p(x , h(x , y), y),
p(x , y , f (x , y)),
¬p(k(x), x , k(x)) }

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Example from [R63]

to prove unsatisfiability, only four ground terms (the proof set) are needed:

T = { a, h(a, a), k(h(a, a)), g(a, k(h(a, a))) }

however, in order to get T we need to generate a big (19765) number of
terms

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Example from [R63]

moreover, only a negligible part of instances of C over T is needed to get an
unsatisfiable S

{ p(a, h(a, a), a),

¬p(k(h(a, a)), h(a, a), k(h(a, a))),

p(g(a, k(h(a, a))), a, k(h(a, a))),

¬p(g(a, k(h(a, a))), a, k(h(a, a))) ∨ ¬p(a, h(a, a), a)∨
∨¬p(g(a, k(h(a, a))), a, k(h(a, a))) ∨ p(k(h(a, a)), h(a, a), k(h(a, a))) }

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

The Resolution method of Robinsonp

Robinson’s idea for efficiency

To postpone the substitution of a variable by a term of the Herbrand universe to
when it is needed by some resolution step

work on clauses with variables

every resolvent (with variables) represents the set of ground instances which
would have been obtained by resolution on ground instances

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

