
Computational Logic
Unification and Resolution

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 1 / 1



Introductionp

[R65], abstract

Theorem-proving on the computer, using procedures based on the fundamental
theorem of Herbrand concerning the first-order predicate calculus, is examined
with a view towards improving the efficiency and widening the range of practical
applicability of these procedures. A close analysis of the process of substitution (of
terms for variables), and the process of truth-functional analysis of the result of
such substitutions, reveals that both processes can be combined into a single new
process (called resolution), iterating which is vastly more efficient than the older
cyclic procedures consisting of substitution stages alternating with truth-functional
analysis stages.
The theory of the resolution process is presented in the form of a system of
first-order logic with just one inference principle (the resolution principle). The
completeness of the system is proved; the simplest proof-procedure based on the
system is then the direct implementation of the proof of completeness. However,
this procedure is quite inefficient, and the paper concludes with a discussion of
several principles (called search principles) which are applicable to the design of
efficient proof-procedures employing resolution as the basic logical process.
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Introductionp

From [R65]

traditionally, a single step in a deduction has been required, for pragmatic
and psychological reasons, to be simple enough, broadly speaking, to be
apprehended as correct by a human being in a single intellectual act

from the theoretical point of view, however, an inference principle need only
to be sound and effective

when the agent carrying out the application of an inference principle is a
modern computing machine, [...] more powerful principles [...] become a
possibility

in the system described in this paper, one such inference principle is used. It
is called the resolution principle, and it is machine-oriented, rather than
human-oriented
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Introductionp

From [R65]

the main advantage of the resolution principle lies in its ability to allow us to
avoid one of the major combinatorial obstacles to efficiency which have
plagued earlier theorem-proving procedures

(cited in the paper) Gilmore
(cited in the paper) Davis-Putnam
ground resolution (as presented before)
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Substitutionsp

Formal definition

A substitution is a partial function (with finite domain) mapping variables to
terms: α = { x1/t1, x2/t2, .., xn/tn }

x1, .., xn are distinct variables

for every i , xi does not occur in ti

Terminology

binding: a pair xi/ti

Domain (α) = { x | x/t ∈ α }
CoDomain (α) = { y | ∃t(∃x(x/t ∈ α) ∧ y occurs in t) }
λ = {} (empty substitution)

if α is bijective from a set V1 of variables to another set V2 of variables, then
it is called a renaming
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Substitutionsp

Examples: variables x , y , z , w

α1 = { x/f (a), y/x , z/h(b, y), w/a } Domain (α1) = {x , y , z ,w}
CoDomain (α1) = {x , y}

α2 = { x/a, y/a, z/h(b, c), w/f (d) } Domain (α2) = {x , y , z ,w}
CoDomain (α2) = {}

α3 = { x/y , z/w } Domain (α3) = {x , z}
CoDomain (α3) = {y ,w}

λ = {} = { x/x , y/y , z/z }
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Substitutionsp

Application of α to F

The application Fα of a substitution α to F is the formula which is obtained by
replacing at the same time for all i every occurrence of xi in F by ti , for each
xi/ti ∈ α

α = { x/f (a), y/x , z/h(b, y), w/a }

(p(x , y , z))α = p(f (a), f (a), h(b, f (a)))  incorrect

(p(x , y , z))α = p(f (a), x , h(b, y))  correct

Terminology (2)

F ′ is an instance of F if there exists α such that F ′ = Fα

α is idempotent iff ((Fα)α = Fα)

this happens when Domain (α) ∩ CoDomain (α) = ∅
{x/a, y/f (b), z/v} is idempotent, {x/a, y/f (b), z/x} is not
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Substitutionsp

Composition of substitutions

Given α = {x1/t1, .., xn/tn} and β = {y1/s1, .., ym/sm}, the composition αβ of
these substitutions is defined as:

{ x1/(t1β), .., xn/(tnβ), y1/s1, .., ym/sm }

removing the elements such that (1) xi ≡ tiβ; or (2) yj ∈ {x1, .., xn}

Example

α = { x/3, y/f (x , 1) } αβ = { x/3, y/f (4, 1) }
β = { x/4 } βα = { x/4, y/f (x , 1) }

Properties

(Fα)β = F (αβ) (f .vs.) (αβ)γ = α(βγ)
αλ = λα = α αβ 6=βα
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Unifiersp

Definition
A substitution α is a unifier of two formulæ F and G if Fα = Gα

in this case, F and G are said to be unifiable

a unifier α of F and G is called most general unifier (MGU) iff for any other
unifier β of F and G there exists γ such that β = αγ

+ two unifiable formulæ have only one (apart from renaming) MGU

Example: F = p(x , f (x , g(y)), z) and G = p(v , f (v , u), a)

α1 = { x/v , u/g(y), z/a } α2 = { x/a, v/a, y/b, u/g(b), z/a }
Fα1 = Gα1 = p(v , f (v , g(y)), a)

Fα2 = Gα2 = p(a, f (a, g(b)), a)

α1 and α2 are both unifiers, but α1 is the MGU:
α2 = α1γ for γ = {v/a, y/b}
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Unification Algorithmp

Several versions

Robinson. [R65]. 1965

Chang, Lee. Symbolic Logic and Mechanical Theorem Proving. 1973

a generalization of the presented version

Martelli, Montanari. An Efficient Unification Algorithm. 1982

Escalade-Imaz, Ghallab. A Practically Efficient and Almost Linear Unification
Algorithm. 1988

Henckel. An Efficient Linear Unification Algorithm. 1997

Suciu. Yet Another Efficient Unification Algorithm. 2006

and many others...

This short list is enough to realize that efficiency is the main issue here
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Unification Algorithmp

Computes the MGU of two atoms F and G with the same predicate

α = λ
while (Fα 6= Gα)

find the leftmost symbol in Fα such that
the corresponding symbol in Gα is different

let tF and tG be the terms in Fα and Gα which begin with such symbols:
if (neither tF nor tG are variables) or

(one is a variable which occurs in the other one)
then FAIL: F and G are not unifiable
else if (tF is a variable) then α = α({tF/tG})
else if (tG is a variable) then α = α({tG/tF})

α is the MGU of F and G
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Unification Algorithmp

Example: F = p(x , x) and G = p(f (a), f (b))

α Fα Gα tF tG
λ p(x , x) p(f (a), f (b)) x f (a)
{x/f (a)} p(f (a), f (a)) p(f (a), f (b)) a b

FAIL: F and G are not unifiable

Example: F = p(x , f (y)) and G = p(z , x)

α Fα Gα tF tG
λ p(x , f (y)) p(z , x) x z
{x/z} p(z , f (y)) p(z , z) f (y) z
{x/f (y), z/f (y)} p(f (y), f (y)) p(f (y), f (y))

F and G have a MGU: { x/f (y), z/f (y) }
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Resolution with Unificationp

Rule of resolution with unification
Let C1 = L1 ∨D1 and C2 = ¬L2 ∨D2 two clauses where the atoms L1 and L2 have
the same predicate symbol. A new clause

(D1β ∨ D2)α

can be deduced, such that

β is a renaming such that C1β and C2 do not have common variables

α is a unifier of L1β and L2

The new clause is called the resolvent of C1 and C2
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Resolution with Unificationp

Rule of factorization
given a clause C = L1 ∨ .. ∨ Ln ∨ D, where Li have the same predicate
symbol, a new clause C ′ = L ∨ Dα can be derived, where

α is a unifier (maybe the MGU) of L1, .., Ln

L = L1α = .. = Lnα

L is called a factor of L1 ∨ .. ∨ Ln ∨ D

+ note that the new clause is just an instance of the old one, which was
obtained by applying α

+ consequently, the new clause is less general, as a logical fact, than the old one

+ in other words, by factorizing, we forget about a part of the information
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Resolution with Unificationp

Resolution with Unification (RU) step

Possibly apply the rule of factorization, followed by resolution with unification

in the system described in this paper, one such inference principle is used. It
is called the resolution principle, and it is machine-oriented, rather than
human-oriented [R65]

+ note that factorization is not compulsory: the new resolvent can be obtained
with or without factorizing

The method
It is possible to build resolution trees where the resolvent of each two clauses can
be obtained by means of an RU step

for every step of ground resolution, there is a step of resolution with
unification
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Resolution with Unificationp

C1 = ¬p(x , f (y)), C2 = p(a, z) ∨ q(z), C3 = p(b, u) ∨ ¬q(u)

¬p(a, f (a)) p(a, f (a)) ∨ q(f (a))

q(f (a)) p(b, f (a)) ∨ ¬q(f (a))

p(b, f (a)) ¬p(b, f (a))

�

¬p(x , f (y)) p(a, z) ∨ q(z)

q(f (y))

{x/a, z/f (y)}

p(b,w) ∨ ¬q(w)

p(b, f (y))

{w/f (y)}

¬p(x ′, f (y ′))

�

{x ′/b, y/y ′}

ground instance resolution resolution with unification
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Resolution with Unificationp

Semantic trees vs. resolution trees

C1 = p(y)
C2 = q(a) ∨ ¬p(f (x))
C3 = ¬q(x)

z

¬q(a)

q(a) ¬q(a)

z

q(a) ∨ ¬p(f (a))

p(f (a)) ¬p(f (a))

z

p(f (a))

q(a) ∨ ¬p(f (a))

q(a)

p(f (a))

¬q(a)

�

q(a) ∨ ¬p(f (x))

q(a)
y/f (x)

p(y)

¬q(x)

�
x/a
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Resolution with Unificationp

Lemma (Lifting Lemma)

Let C1 (resp., C2) be a clause and B1 (resp., B2) one of its ground instances. If B
is a resolvent of B1 and B2, then

there exists a clause C which has B as one of its ground instances

C results from a resolution step on C1 and C2 w.r.t. a literal L which is a
common factor of C1 and C2:

C1 = L1 ∨ .. ∨ Ln ∨ D1 C2 = ¬Ln+1 ∨ .. ∨ ¬Ln+m ∨ D2

C = (D1ρ ∨ D2)θ

ρ is a renaming such that C1ρ and C2 have no common variables

θ is an MGU: L1ρθ = .. = Lnρθ = Ln+1θ = .. = Ln+mθ = L
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Resolution with Unificationp

MGU resolution rule
+ special case of resolution with unification, where the unifier is the MGU

Let
C1 = L1 ∨ .. ∨ Ln ∨ D1 C2 = ¬Ln+1 ∨ .. ∨ ¬Ln+m ∨ D2

where all L literals have the same predicate symbol. A new clause

(D1ρ ∨ D2)θ

can be deduced, where

ρ is a renaming such that Vars(C1ρ) ∩ Vars(C2) = ∅
θ is the MGU of L1ρ, . . . , Lnρ, Ln+1, . . . , Ln+m
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Resolution with Unificationp

Lemma (MGU resolution rule, correctness)

[ ∀x1..xpC1, ∀y1..yqC2 ] ` ∀z1..zr ((D1ρ ∨ D2)θ) is correct, where

{x1, .., xp} = Vars(C1), {y1, .., yq} = Vars(C2),
{z1, .., zr} = Vars((D1ρ ∨ D2)θ)

ρ is a renaming of x1..xp defined as above

θ = MGU(L1ρ, . . . , Lnρ, Ln+1, . . . , Ln+m)

Proof.

¶ ∀x1..xp(L1 ∨ .. ∨ Ln ∨ D1) hypothesis (C1 = L ∨ D1)

· ∀z1..zr (¬Ln+1 ∨ .. ∨ ¬Ln+m ∨ D2) hypothesis (C2 = ¬L ∨ D2)

¸ F ∨ E1 apply ρ and θ to C1, idempotence F ∨ .. ∨ F = F

¹ ¬F ∨ E2 apply θ to C2, idempotence ¬F ∨ .. ∨ ¬F = ¬F

º E1 ∨ E2 cut on ¸ and ¹

» ∀z1..zr ((D1ρ ∨ D2)θ) generalization of º
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Resolution with Unificationp

An important observation

+ the rule of MGU resolution does not imply that all possible factorization steps
have been performed

actually, factorization helps in some cases, but may make the problem
unsolvable in other cases

C1 ¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(u, z ,w) ∨ p(x , v ,w)
C2 ¬p(x , y , u) ∨ ¬p(v , z , y) ∨ ¬p(x , v ,w) ∨ p(u, z ,w)
C3 p(x , e, x)
C4 p(x , i(x), e)
C5 p(i(x), x , e)
C6 ¬p(c , c , e)
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Resolution with Unificationp

An important observation

+ the rule of MGU resolution does not imply that all possible factorization steps
have been performed

actually, factorization helps in some cases, but may make the problem
unsolvable in other cases

C1 ¬p(x , y) ∨ ¬q(f (y), x)
C2 p(x , g(x))
C3 r(x , a) ∨ ¬p(b, g(x)) ∨ r(z , z)
C4 q(f (g(x)), a) ∨ ¬r(x , a) ∨ ¬r(a, y)
C5 p(x , g(y))
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Resolution with Unificationp

Lemma
Let C be an unsatisfiable set of clauses with a closed semantic tree of depth
n ≥ 1. Then there is a set R of resolvents of C such that C′ = C ∪ R has a closed
semantic tree of depth n − 1

Proof.
¶ let B1,B2 be two ground instances of C1,C2 ∈ C which are false in two failure

nodes (brothers) at level n (the deepest in the tree)

· the resolvent of B of B1 and B2 is false in the parent node (depth n − 1)

¸ by the Lifting Lemma, there exists an MGU resolvent C of C1 and C2 such
that B is a ground instance of C

¹ let R be the set of such C s, obtained by considering all pairs of failure nodes
at the maximum depth n

º a closed semantic tree of C ∪ R can be constructed which has maximum
depth n − 1 (essentially, by pruning the initial tree)
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Resolution with Unificationp

Lemma (MGU resolution)

If a set C of clauses is unsatisfiable, then � is deduced from it by MGU resolution

Proof.

¶ UNSAT (C)

· there exists an n-deep closed semantic tree (by Herbrand’s Theorem)

¸ if n = 1, then

B1 and B2, ground instances of C1 and C2, are false at the only non-root nodes
their resolvent must be false in the root, so that it must be �
� is also the resolvent of C1 and C2 (by Lifting Lemma, and since � is ground)

¹ if n > 1, then

there exists a set R of resolvents of C clauses, such that C′ = C ∪ R has a
(n−1)-deep closed semantic tree (by the Lemma above)
the rest follows by induction
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Resolution with Unificationp

Theorem (MGU resolution)

A set C of clauses is unsatisfiable iff � can be deduced from it by MGU resolution
(C `MGU �)

Proof (→).

Follows by the MGU resolution Lemma

Proof (←).

¶ C ` � by MGU resolution

· C |= � for the correctness of MGU resolution

¸ � is false in every interpretation

¹ C must be false in every interpretation

º UNSAT (C)
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Method of Saturationp

Let C be a set of clauses

S0 = C
n = 0
repeat

if (� ∈ Sn) then STOP: UNSAT (C)
else

Sn+1 = {resolvents of C1 and C2 | C1 ∈ S1 ∪ .. ∪ Sn, C2 ∈ Sn}
if (Sn+1 = ∅) or (Sn+1 ⊆ S1 ∪ .. ∪ Sn) then STOP: SAT (C)
n = n + 1

Completeness: UNSAT (C) iff � is derived

the construction of Sn+1 requires considering all possible factors of C1 and C2

this method generates all and only the resolvents of C clauses

a number of redundant clauses are generated
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Method of Saturationp

Example: C = {p ∨ q, ¬p ∨ q, p ∨ ¬q, ¬p ∨ ¬q}
S0 = (1) p ∨ q S1 = (5) q (1,2)

(2) ¬p ∨ q (6) p (1,3)
(3) p ∨ ¬q (7) q ∨ ¬q (1,4)
(4) ¬p ∨ ¬q (8) p ∨ ¬p (1,4)

(9) q ∨ ¬q (2,3)
(10) p ∨ ¬p (2,3)
(11) ¬p (2,4)
(12) ¬q (3,4)

even after one step there are redundant and tautological clauses
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Method of Saturationp

Conclusion
MGU resolution allows to decide satisfiability without the need to use ground
instances

however, saturation is not efficient since it generates many useless clauses

the raw implementation of the Resolution Principle would produce a very
inefficient refutation procedure [R65]
by Church’s Theorem we know that for some inputs S this procedure, and in
general all correct refutation procedures, will not terminate [R65]

Example [R65]

C1 = q(a) C2 = ¬q(x) ∨ q(f (x))

at each step, q(f n(a)) is generated, for n increasing by 1 each time
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