Computational Logic
 Unification and Resolution

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es
Academic Year 2009/2010

Introduction

[R65], abstract

Theorem-proving on the computer, using procedures based on the fundamental theorem of Herbrand concerning the first-order predicate calculus, is examined with a view towards improving the efficiency and widening the range of practical applicability of these procedures. A close analysis of the process of substitution (of terms for variables), and the process of truth-functional analysis of the result of such substitutions, reveals that both processes can be combined into a single new process (called resolution), iterating which is vastly more efficient than the older cyclic procedures consisting of substitution stages alternating with truth-functional analysis stages.
The theory of the resolution process is presented in the form of a system of first-order logic with just one inference principle (the resolution principle). The completeness of the system is proved; the simplest proof-procedure based on the system is then the direct implementation of the proof of completeness. However, this procedure is quite inefficient, and the paper concludes with a discussion of several principles (called search principles) which are applicable to the design of efficient proof-procedures employing resolution as the basic logical process.

Introduction

From [R65]

- traditionally, a single step in a deduction has been required, for pragmatic and psychological reasons, to be simple enough, broadly speaking, to be apprehended as correct by a human being in a single intellectual act
- from the theoretical point of view, however, an inference principle need only to be sound and effective
- when the agent carrying out the application of an inference principle is a modern computing machine, [...] more powerful principles [...] become a possibility
- in the system described in this paper, one such inference principle is used. It is called the resolution principle, and it is machine-oriented, rather than human-oriented

Introduction

From [R65]

- the main advantage of the resolution principle lies in its ability to allow us to avoid one of the major combinatorial obstacles to efficiency which have plagued earlier theorem-proving procedures
- (cited in the paper) Gilmore
- (cited in the paper) Davis-Putnam
- ground resolution (as presented before)

Substitutions

Formal definition

A substitution is a partial function (with finite domain) mapping variables to terms: $\alpha=\left\{x_{1} / t_{1}, x_{2} / t_{2}, . ., x_{n} / t_{n}\right\}$

- $x_{1}, . ., x_{n}$ are distinct variables
- for every i, x_{i} does not occur in t_{i}

Terminology

- binding: a pair x_{i} / t_{i}
- Domain $(\alpha)=\{x \mid x / t \in \alpha\}$
- CoDomain $(\alpha)=\{y \mid \exists t(\exists x(x / t \in \alpha) \wedge y$ occurs in $t)\}$
- $\lambda=\{ \}$ (empty substitution)
- if α is bijective from a set V_{1} of variables to another set V_{2} of variables, then it is called a renaming

Substitutions

Examples: variables x, y, z, w

$$
\begin{array}{ll}
\alpha_{1}=\{x / f(a), y / x, z / h(b, y), w / a\} & \begin{array}{r}
\text { Domain }\left(\alpha_{1}\right)
\end{array}=\{x, y, z, w\} \\
\alpha_{2}=\{x / a, y / a, z / h(b, c), w / f(d)\} & \begin{aligned}
\text { CoDomain }\left(\alpha_{1}\right) & =\{x, y\} \\
\text { Domain }\left(\alpha_{2}\right) & =\{x, y, z, w\} \\
\text { CoDomain }\left(\alpha_{2}\right) & =\{ \}
\end{aligned} \\
\alpha_{3}=\{x / y, z / w\} & \begin{aligned}
\text { Domain }\left(\alpha_{3}\right) & =\{x, z\} \\
\text { CoDomain }\left(\alpha_{3}\right) & =\{y, w\}
\end{aligned}
\end{array}
$$

Substitutions

Application of α to F

The application $F \alpha$ of a substitution α to F is the formula which is obtained by replacing at the same time for all i every occurrence of x_{i} in F by t_{i}, for each $x_{i} / t_{i} \in \alpha$

$$
\alpha=\{x / f(a), y / x, z / h(b, y), w / a\}
$$

- $(p(x, y, z)) \alpha=p(f(a), f(a), h(b, f(a))) \rightsquigarrow$ incorrect
- $(p(x, y, z)) \alpha=p(f(a), x, h(b, y)) \rightsquigarrow$ correct

Terminology (2)

- F^{\prime} is an instance of F if there exists α such that $F^{\prime}=F \alpha$
- α is idempotent iff $((F \alpha) \alpha=F \alpha)$
- this happens when $\operatorname{Domain}(\alpha) \cap \operatorname{CoDomain}(\alpha)=\emptyset$
- $\{x / a, y / f(b), z / v\}$ is idempotent, $\{x / a, y / f(b), z / x\}$ is not

Substitutions

Composition of substitutions

Given $\alpha=\left\{x_{1} / t_{1}, . ., x_{n} / t_{n}\right\}$ and $\beta=\left\{y_{1} / s_{1}, . ., y_{m} / s_{m}\right\}$, the composition $\alpha \beta$ of these substitutions is defined as:

$$
\left\{x_{1} /\left(t_{1} \beta\right), . ., x_{n} /\left(t_{n} \beta\right), y_{1} / s_{1}, . ., y_{m} / s_{m}\right\}
$$

removing the elements such that (1) $x_{i} \equiv t_{i} \beta$; or (2) $y_{j} \in\left\{x_{1}, . ., x_{n}\right\}$

Example

$$
\begin{array}{ll}
\alpha=\{x / 3, y / f(x, 1)\} & \alpha \beta=\{x / 3, y / f(4,1)\} \\
\beta=\{x / 4\} & \beta \alpha=\{x / 4, y / f(x, 1)\}
\end{array}
$$

Properties

$$
\begin{array}{lll}
(F \alpha) \beta=F(\alpha \beta) & (\text { f.vs. }) & (\alpha \beta) \gamma=\alpha(\beta \gamma) \\
\alpha \lambda=\lambda \alpha=\alpha & & \alpha \beta \neq \beta \alpha
\end{array}
$$

Unifiers

Definition

A substitution α is a unifier of two formulæ F and G if $F \alpha=G \alpha$

- in this case, F and G are said to be unifiable
- a unifier α of F and G is called most general unifier (MGU) iff for any other unifier β of F and G there exists γ such that $\beta=\alpha \gamma$
(\#) two unifiable formulæ have only one (apart from renaming) MGU

Example: $F=p(x, f(x, g(y)), z)$ and $G=p(v, f(v, u), a)$

- $\alpha_{1}=\{x / v, u / g(y), z / a\} \quad \alpha_{2}=\{x / a, v / a, y / b, u / g(b), z / a\}$
- $F \alpha_{1}=G \alpha_{1}=p(v, f(v, g(y)), a)$
- $F \alpha_{2}=G \alpha_{2}=p(a, f(a, g(b)), a)$
- α_{1} and α_{2} are both unifiers, but α_{1} is the $M G U$:

$$
\alpha_{2}=\alpha_{1} \gamma \quad \text { for } \quad \gamma=\{v / a, y / b\}
$$

Unification Algorithm

Several versions

- Robinson. [R65]. 1965
- Chang, Lee. Symbolic Logic and Mechanical Theorem Proving. 1973
- a generalization of the presented version
- Martelli, Montanari. An Efficient Unification Algorithm. 1982
- Escalade-Imaz, Ghallab. A Practically Efficient and Almost Linear Unification Algorithm. 1988
- Henckel. An Efficient Linear Unification Algorithm. 1997
- Suciu. Yet Another Efficient Unification Algorithm. 2006
- and many others...

This short list is enough to realize that efficiency is the main issue here

Unification Algorithm

Computes the MGU of two atoms F and G with the same predicate

$\alpha=\lambda$
while ($F \alpha \neq G \alpha$)
find the leftmost symbol in $F \alpha$ such that the corresponding symbol in $G \alpha$ is different
let t_{F} and t_{G} be the terms in $F \alpha$ and $G \alpha$ which begin with such symbols:
if (neither t_{F} nor t_{G} are variables) or (one is a variable which occurs in the other one)
then FAIL: F and G are not unifiable else if $\left(t_{F}\right.$ is a variable) then $\alpha=\alpha\left(\left\{t_{F} / t_{G}\right\}\right)$ else if $\left(t_{G}\right.$ is a variable) then $\alpha=\alpha\left(\left\{t_{G} / t_{F}\right\}\right)$
α is the MGU of F and G

Unification Algorithm

Example: $F=p(x, x)$ and $G=p(f(a), f(b))$

α	$F \alpha$	$G \alpha$	t_{F}	t_{G}
λ	$p(x, x)$	$p(f(a), f(b))$	x	$f(a)$
$\{x / f(a)\}$	$p(f(a), f(a))$	$p(f(a), f(b))$	a	b

FAIL: F and G are not unifiable
Example: $F=p(x, f(y))$ and $G=p(z, x)$

α	$F \alpha$	$G \alpha$	t_{F}	t_{G}
λ	$p(x, f(y))$	$p(z, x)$	x	z
$\{x / z\}$	$p(z, f(y))$	$p(z, z)$	$f(y)$	z
$\{x / f(y), z / f(y)\}$	$p(f(y), f(y))$	$p(f(y), f(y))$		

F and G have a $M G U:\{x / f(y), z / f(y)\}$

Resolution with Unification

Rule of resolution with unification

Let $C_{1}=L_{1} \vee D_{1}$ and $C_{2}=\neg L_{2} \vee D_{2}$ two clauses where the atoms L_{1} and L_{2} have the same predicate symbol. A new clause

$$
\left(D_{1} \beta \vee D_{2}\right) \alpha
$$

can be deduced, such that

- β is a renaming such that $C_{1} \beta$ and C_{2} do not have common variables
- α is a unifier of $L_{1} \beta$ and L_{2}

The new clause is called the resolvent of C_{1} and C_{2}

Resolution with Unification

Rule of factorization

- given a clause $C=L_{1} \vee \ldots \vee L_{n} \vee D$, where L_{i} have the same predicate symbol, a new clause $C^{\prime}=L \vee D \alpha$ can be derived, where
- α is a unifier (maybe the $M G U$) of $L_{1}, . ., L_{n}$
- $L=L_{1} \alpha=. .=L_{n} \alpha$
- L is called a factor of $L_{1} \vee \ldots \vee L_{n} \vee D$
note that the new clause is just an instance of the old one, which was obtained by applying α
ter consequently, the new clause is less general, as a logical fact, than the old one in other words, by factorizing, we forget about a part of the information

Resolution with Unification

Resolution with Unification (RU) step

Possibly apply the rule of factorization, followed by resolution with unification

- in the system described in this paper, one such inference principle is used. It is called the resolution principle, and it is machine-oriented, rather than human-oriented [R65]
note that factorization is not compulsory: the new resolvent can be obtained with or without factorizing

The method

It is possible to build resolution trees where the resolvent of each two clauses can be obtained by means of an RU step

- for every step of ground resolution, there is a step of resolution with unification

Resolution with Unification

$$
C_{1}=\neg p(x, f(y)), C_{2}=p(a, z) \vee q(z), C_{3}=p(b, u) \vee \neg q(u)
$$

$$
\neg p(a, f(a)) \quad p(a, f(a)) \vee q(f(a)) \quad \neg p(x, f(y)) \quad p(a, z) \vee q(z)
$$

$p(b, f(y))$
$\{w / f(y)\}$

ground instance resolution
resolution with unification

Resolution with Unification

Semantic trees vs. resolution trees

$$
\begin{aligned}
C_{1} & =p(y) \\
C_{2} & =q(a) \vee \neg p(f(x)) \\
C_{3} & =\neg q(x)
\end{aligned}
$$

$$
q(a) \vee \neg p(f(a)) \quad p(f(a))
$$

Resolution with Unification

Lemma (Lifting Lemma)

Let C_{1} (resp., C_{2}) be a clause and B_{1} (resp., B_{2}) one of its ground instances. If B is a resolvent of B_{1} and B_{2}, then

- there exists a clause C which has B as one of its ground instances
- C results from a resolution step on C_{1} and C_{2} w.r.t. a literal L which is a common factor of C_{1} and C_{2} :

$$
\begin{aligned}
& C_{1}=L_{1} \vee . . \vee L_{n} \vee D_{1} \quad C_{2}=\neg L_{n+1} \vee . . \vee \neg L_{n+m} \vee D_{2} \\
& C=\left(D_{1} \rho \vee D_{2}\right) \theta
\end{aligned}
$$

- ρ is a renaming such that $C_{1} \rho$ and C_{2} have no common variables
- θ is an MGU: $L_{1} \rho \theta=. .=L_{n} \rho \theta=L_{n+1} \theta=. .=L_{n+m} \theta=L$

Resolution with Unification

MGU resolution rule

special case of resolution with unification, where the unifier is the MGU
Let

$$
C_{1}=L_{1} \vee \ldots \vee L_{n} \vee D_{1} \quad C_{2}=\neg L_{n+1} \vee \ldots \vee \neg L_{n+m} \vee D_{2}
$$

where all L literals have the same predicate symbol. A new clause

$$
\left(D_{1} \rho \vee D_{2}\right) \theta
$$

can be deduced, where

- ρ is a renaming such that $\operatorname{Vars}\left(C_{1} \rho\right) \cap \operatorname{Vars}\left(C_{2}\right)=\emptyset$
- θ is the $M G U$ of $L_{1} \rho, \ldots, L_{n} \rho, L_{n+1}, \ldots, L_{n+m}$

Resolution with Unification

Lemma (MGU resolution rule, correctness)

$$
\begin{aligned}
& {\left[\forall x_{1} . . x_{p} C_{1}, \quad \forall y_{1} . . y_{q} C_{2}\right] \vdash \forall z_{1} . . z_{r}\left(\left(D_{1} \rho \vee D_{2}\right) \theta\right) \quad \text { is correct, where }} \\
& \quad \cdot\left\{x_{1}, . ., x_{p}\right\}=\operatorname{Vars}\left(C_{1}\right),\left\{y_{1}, . ., y_{q}\right\}=\operatorname{Vars}\left(C_{2}\right) \\
& \left\{z_{1}, . ., z_{r}\right\}=\operatorname{Vars}\left(\left(D_{1} \rho \vee D_{2}\right) \theta\right)
\end{aligned}
$$

- ρ is a renaming of $x_{1} . . x_{p}$ defined as above
- $\theta=\operatorname{MGU}\left(L_{1} \rho, \ldots, L_{n} \rho, L_{n+1}, \ldots, L_{n+m}\right)$

Proof.

(1) $\forall x_{1} . . x_{p}\left(L_{1} \vee \ldots \vee L_{n} \vee D_{1}\right)$
(2) $\forall z_{1} . . z_{r}\left(\neg L_{n+1} \vee \ldots \vee \neg L_{n+m} \vee D_{2}\right)$
hypothesis $\left(C_{1}=\bar{L} \vee D_{1}\right)$
hypothesis $\left(C_{2}=\overline{\neg L} \vee D_{2}\right)$
(3) $F \vee E_{1}$
(4) $\neg F \vee E_{2}$
(5) $E_{1} \vee E_{2}$
(6) $\forall z_{1} . . z_{r}\left(\left(D_{1} \rho \vee D_{2}\right) \theta\right)$
apply ρ and θ to C_{1}, idempotence $F \vee . . \vee F=F$ apply θ to C_{2}, idempotence $\neg F \vee . . \vee \neg F=\neg F$ cut on 3 and 4 generalization of $\mathbf{5}$

Resolution with Unification

An important observation

the rule of MGU resolution does not imply that all possible factorization steps have been performed

- actually, factorization helps in some cases, but may make the problem unsolvable in other cases

$$
\begin{array}{ll}
C_{1} & \neg p(x, y, u) \vee \neg p(y, z, v) \vee \neg p(u, z, w) \vee p(x, v, w) \\
C_{2} & \neg p(x, y, u) \vee \neg p(v, z, y) \vee \neg p(x, v, w) \vee p(u, z, w) \\
C_{3} & p(x, e, x) \\
C_{4} & p(x, i(x), e) \\
C_{5} & p(i(x), x, e) \\
C_{6} & \neg p(c, c, e)
\end{array}
$$

Resolution with Unification

An important observation

the rule of MGU resolution does not imply that all possible factorization steps have been performed

- actually, factorization helps in some cases, but may make the problem unsolvable in other cases

$$
\begin{array}{ll}
C_{1} & \neg p(x, y) \vee \neg q(f(y), x) \\
C_{2} & p(x, g(x)) \\
C_{3} & r(x, a) \vee \neg p(b, g(x)) \vee r(z, z) \\
C_{4} & q(f(g(x)), a) \vee \neg r(x, a) \vee \neg r(a, y) \\
C_{5} & p(x, g(y))
\end{array}
$$

Resolution with Unification

Lemma

Let \mathcal{C} be an unsatisfiable set of clauses with a closed semantic tree of depth $n \geq 1$. Then there is a set R of resolvents of \mathcal{C} such that $\mathcal{C}^{\prime}=\mathcal{C} \cup R$ has a closed semantic tree of depth $n-1$

Proof.

(1) let B_{1}, B_{2} be two ground instances of $C_{1}, C_{2} \in \mathcal{C}$ which are false in two failure nodes (brothers) at level n (the deepest in the tree)
(2) the resolvent of B of B_{1} and B_{2} is false in the parent node (depth $n-1$)
(3) by the Lifting Lemma, there exists an MGU resolvent C of C_{1} and C_{2} such that B is a ground instance of C
(4) let R be the set of such $C \mathrm{~s}$, obtained by considering all pairs of failure nodes at the maximum depth n
(5) a closed semantic tree of $\mathcal{C} \cup R$ can be constructed which has maximum depth $n-1$ (essentially, by pruning the initial tree)

Resolution with Unification

Lemma (MGU resolution)

If a set \mathcal{C} of clauses is unsatisfiable, then \square is deduced from it by MGU resolution

Proof.

(1) UNSAT (C)
(2) there exists an n-deep closed semantic tree (by Herbrand's Theorem)
(3) if $n=1$, then

- B_{1} and B_{2}, ground instances of C_{1} and C_{2}, are false at the only non-root nodes
- their resolvent must be false in the root, so that it must be \square
- \square is also the resolvent of C_{1} and C_{2} (by Lifting Lemma, and since \square is ground)
(4) if $n>1$, then
- there exists a set R of resolvents of \mathcal{C} clauses, such that $\mathcal{C}^{\prime}=\mathcal{C} \cup R$ has a ($n-1$)-deep closed semantic tree (by the Lemma above)
- the rest follows by induction

Resolution with Unification

Theorem (MGU resolution)

A set \mathcal{C} of clauses is unsatisfiable iff \square can be deduced from it by MGU resolution ($\mathcal{C} \vdash_{\text {MGU }} \square$)

Proof (\rightarrow).

Follows by the MGU resolution Lemma

Proof (\leftarrow).

(1) $\mathcal{C} \vdash \square$ by $M G U$ resolution
(2) $\mathcal{C} \models \square$ for the correctness of $M G U$ resolution
(3) \square is false in every interpretation
(4) \mathcal{C} must be false in every interpretation
(6) UNSAT (C)

Method of Saturation

Let \mathcal{C} be a set of clauses
$S_{0}=\mathcal{C}$
$n=0$
repeat
if $\left(\square \in S_{n}\right)$ then STOP: UNSAT (C)
else

$$
\begin{aligned}
& S_{n+1}=\left\{\text { resolvents of } C_{1} \text { and } C_{2} \mid C_{1} \in S_{1} \cup . . \cup S_{n}, C_{2} \in S_{n}\right\} \\
& \text { if }\left(S_{n+1}=\emptyset\right) \text { or }\left(S_{n+1} \subseteq S_{1} \cup . . \cup S_{n}\right) \text { then STOP: } \operatorname{SAT}(\mathcal{C}) \\
& n=n+1
\end{aligned}
$$

Completeness: UNSAT (C) iff \square is derived

- the construction of S_{n+1} requires considering all possible factors of C_{1} and C_{2}
- this method generates all and only the resolvents of \mathcal{C} clauses
- a number of redundant clauses are generated

Method of Saturation

Example: $\mathcal{C}=\{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q\}$

$$
\begin{array}{ccc}
S_{0}=(1) p \vee q & S_{1}= & \text { (5) } q \\
\text { (2) } \neg p \vee q & \text { (6) } p & (1,2) \\
\text { (3) } p \vee \neg q & \text { (7) } q \vee \neg q & (1,3) \\
\text { (4) } \neg p \vee \neg q & \text { (8) } p \vee \neg p & (1,4) \\
& \text { (9) } q \vee \neg q & (2,3) \\
& \text { (10) } p \vee \neg p & (2,3) \\
& \text { (11) } \neg p & (2,4) \\
& \text { (12) } \neg q & (3,4)
\end{array}
$$

even after one step there are redundant and tautological clauses

Method of Saturation

Conclusion

- MGU resolution allows to decide satisfiability without the need to use ground instances
- however, saturation is not efficient since it generates many useless clauses
- the raw implementation of the Resolution Principle would produce a very inefficient refutation procedure [R65]
- by Church's Theorem we know that for some inputs S this procedure, and in general all correct refutation procedures, will not terminate [R65]

Example [R65]

$$
C_{1}=q(a) \quad C_{2}=\neg q(x) \vee q(f(x))
$$

at each step, $q\left(f^{n}(a)\right)$ is generated, for n increasing by 1 each time

