Computational Logic

Resolution Strategies

Damiano Zanardini
UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

Introduction

The problem

- the method of saturation from a set \mathcal{C} generates, if not limited, a big number of clauses which are redundant or irrelevant
- it is necessary to use systematic selection rules which make the process simpler and computationally efficient
- two kinds of criteria
- simplification strategies: reducing the number of clauses
- refinement strategies: limiting the generation of clauses

Terminology

- \mathcal{C} is the initial set of clauses
- \mathcal{C}^{\prime} is the current set of clauses (at some point during the deduction process where we want to apply the rules)

Simplification Strategies

2. Elimination of identical clauses

- obviously, $\mathcal{C} \vdash_{\text {MGU }} \square$ iff \square can be derived by eliminating identical clauses (apart from one copy, of course)

How to do it

- if a clause is generated which already appears in \mathcal{C}^{\prime}, then it is not included note that, in a computer algorithm, this is a check which may involve comparing the new clause with the entire set \mathcal{C}^{\prime} of existing clauses

Simplification Strategies

2. Elimination of clauses with pure literals

- a literal L is pure iff there does not exist in the set a literal $\neg L^{\prime}$ where L and L^{\prime} are unifiable
- $\mathcal{C} \vdash_{\text {MGU }} \square$ iff \square can be derived after removing from \mathcal{C} clauses with pure literals
- a clause with pure literals is useless for refutation since it will never be eliminated by resolution

How to do it

- clauses with pure literals are removed from the set
- it is enough to apply this strategy once, since no new clauses with pure literals will be generated

Simplification Strategies

3 Elimination of tautological clauses

- $\mathcal{C} \vdash_{\text {MGU }} \square$ iff \square can be derived from \mathcal{C} after removing tautologies

How to do it

- if a clause is generated which is a tautology, then it is not included in \mathcal{C}^{\prime}

Simplification Strategies

Example: $\mathcal{C}=\{p \vee q, \neg p \vee q, p \vee \neg q, \neg p \vee \neg q\}$

- by applying all the simplification rules, the derivation comes to be

(1)	$p \vee q$	
(2)	$\neg p \vee q$	
(3)	$p \vee \neg q$	
(4)	$\neg p \vee \neg q$	
(5)	q	$(1,2)$
(6)	p	$(1,3)$
(7)	$\neg p$	$(2,4)$
(8)	$\neg q$	$(3,4)$
(9)	\square	$(5,8)$

- it must be noted that no other smart strategy has been used

	pairs considered	resolvents generated
first iteration	$6(6)$	$8(8)$
second iteration	$19(60)$	$9(\ldots)$

Simplification Strategies

* Elimination of subsumed clauses
- a clauses C subsumes another clause D if there exists a substitution α such that $C \alpha$ is a subformula of $D: D=C \alpha \vee D^{\prime}$

```
Example
D=p(f(a),x)\veeq(g(y),y)\veer(b) is subsumed by C=r(z)\veep(f(u),v) under
\alpha={u/a,v/x,z/b}
```


Simplification Strategies

Lemma (subsumed clauses)

The set $\left\{C_{1}, . ., C_{n}, C, C \alpha \vee D\right\}$ is unsatisfiable iff $\left\{C_{1}, . ., C_{n}, C\right\}$ is

Proof (\rightarrow).

(1) $\operatorname{UNSAT}\left(\left\{C_{1}, . ., C_{n}, C, C \alpha \vee D\right\}\right)$
(2) suppose $\operatorname{SAT}\left(\left\{C_{1}, . ., C_{n}, C\right\}\right)$: there exists a Herbrand interpretation I_{H} which makes all C_{i} and C true
(3) I_{H} makes $C \alpha$ true (since universal quantification is implicit), so that it also makes $C \alpha \vee D$ true
(4) I_{H} satisfies $\left\{C_{1}, . ., C_{n}, C, C \alpha \vee D\right\}$: contradiction with (1)
(6) $\operatorname{UNSAT}\left(\left\{C_{1}, . ., C_{n}, C\right\}\right)$

Simplification Strategies

Lemma (subsumed clauses)

The set $\left\{C_{1}, . ., C_{n}, C, C \alpha \vee D\right\}$ is unsatisfiable iff $\left\{C_{1}, . ., C_{n}, C\right\}$ is

Proof (\leftarrow).

(1) $\operatorname{UNSAT}\left(\left\{C_{1}, . ., C_{n}, C\right\}\right)$
(2) there is no interpretation which makes C_{i} and C true
(3) there is no interpretation which makes C_{i}, C and $C \alpha \vee D$ true
(4) $\operatorname{UNSAT}\left(\left\{C_{1}, . ., C_{n}, C, C \alpha \vee D\right\}\right)$

Simplification Strategies

Procedure for deciding subsumption: is C_{1} subsumed by C_{2} ?

Procedure IS_SUBSUMED_BY $\left(C_{1}, C_{2}\right)$:
if (C_{2} is empty) then return YES: C_{1} is subsumed by C_{2} else if for some $p\left(\left(p(\bar{t}) \in C_{2}\right.\right.$ and there is no $\left.p\left(\bar{t}^{\prime}\right) \in C_{1}\right) \vee$

$$
\left.\left(\neg p(\bar{t}) \in C_{2} \text { and there is no } \neg p\left(\bar{t}^{\prime}\right) \in C_{1}\right)\right)
$$

then return NO: C_{1} is not subsumed by C_{2}
$L_{2}=q(\bar{t})$ is the first literal in C_{2}
$C L_{1}=\left\{q\left(\overline{t^{\prime}}\right) \in C_{1} \mid \overline{t^{\prime}}\right.$ are terms $\}$
for each $\left(L \in C L_{1}\right)$

$$
\begin{aligned}
& \mu_{L}=M G U\left(L_{2}, L\right) \text { such that } \operatorname{Domain}\left(\mu_{L}\right) \cap \operatorname{Vars}(L)=\emptyset \\
& \text { if (such } \mu_{L} \text { exists) } \\
& C_{2}^{\prime} \text { is } C_{2} \text { where } L_{2} \text { has been removed } \\
& C_{2}^{\prime \prime}=C_{2}^{\prime} \mu_{L} \\
& \text { if (IS_SUBSUMED_BY }\left(C_{1}, C_{2}^{\prime \prime}\right)=\text { YES) then } \\
& \text { return YES: } C_{1} \text { is subsumed by } C_{2} \\
& \text { return NO: } C_{1} \text { is not subsumed by } C_{2}
\end{aligned}
$$

Simplification Strategies

Example:

$$
C_{1}=p(a, s) \vee p(b, z) \vee \neg q(f(z), b)
$$

$$
C_{2}=p(x, y) \vee \neg q(w, x)
$$

- $L_{2}=p(x, y)$
- $C L_{1}=\{p(a, s), p(b, z)\}$
- $\mu_{p(a, s)}=\{x / a, y / s\}$
- $\mu_{p(b, z)}=\{x / b, y / z\}$
- $\mu_{p(a, s)} \rightsquigarrow C_{2}^{\prime \prime}=\neg q(w, a)$
- $q(w, a)$ and $q(f(z), b)$ are not unifiable
- $\mu_{p(b, z)} \rightsquigarrow C_{2}^{\prime \prime}=\neg q(w, b)$
- and $\operatorname{MGU}(q(w, b), q(f(z), b))=\{w / f(z)\}$
- therefore, C_{1} is subsumed by C_{2}

Simplification Strategies

Example: $\quad C_{1}=p(a, s) \vee p(b, z) \vee \neg q(f(z), b)$

$$
C_{2}=p(x, y) \vee \neg q(w, x)
$$

	C_{2}	L_{2}	L (one from $\left.C L_{1}\right)$	μ_{L}
1	$p(x, y) \vee \neg q(w, x)$	$p(x, y)$	$p(a, s)$	$\{x / a, y / s\}$
2	$\neg q(w, a)$	$\neg q(w, a)$	$\neg q(f(z), b)$	fail
1	$p(x, y) \vee \neg q(w, x)$	$p(x, y)$	$p(b, z)$	$\{x / b, y / z\}$
2	$\neg q(w, b)$	$\neg q(w, b)$	$\neg q(f(z), b)$	$\{w / f(x)\}$
3	$\square:$ YES			

Search Trees

Derivations

A derivation of C from $\left\{C_{1}, . ., C_{n}\right\}$ is a sequence $\left\langle C_{1}, . ., C_{n}, R_{1}, . ., R_{m}\right\rangle$ such that

- every R_{i} is the resolvent of two previous clauses
- no resolution step is done more than once
- $R_{m}=C$

Refutations

A refutation of $\left\{C_{1}, \ldots, C_{n}\right\}$ is a derivation of \square from $\left\{C_{1}, . ., C_{n}\right\}$

Facts

- a derivation is a correct deduction (by correctness of MGU resolution)
- if $\operatorname{UNSAT}(\mathcal{C})$, then there exists a refutation for \mathcal{C} (by completeness of MGU resolution)

Search Trees

Search tree T of $\left\{C_{1}, . ., C_{n}\right\}$

- C_{1} is the root of T
- C_{i+1} is a node of T, where C_{i} is its (direct) predecessor $(1 \leq i<n)$
- let N_{p} be the set of predecessors of the node N, plus N itself
- every node N of level $i \geq n$ has, as successors, all clauses R such that
- R is a resolvent of two clauses belonging to N_{p}
- $R \notin N_{p}$

Properties

- every path from C_{1} to a node N is a derivation of N
- every possible derivation is represented by a path in the search tree
- the tree for \mathcal{C} contains all the resolvents for \mathcal{C}
- if \square is a resolvent, then there is at least a node labeled with \square

Search Trees

Derivations and search trees

Search Trees

Derivations and search trees

$C_{1} C_{2} C_{3} C_{4} R_{1} R_{2} R_{3} R_{4} \square$ $C_{1} C_{2} C_{3} C_{4} R_{1} R_{2} R_{3} \square$ $C_{1} C_{2} C_{3} C_{4} R_{1} R_{2} \square$ $C_{1} C_{2} C_{3} C_{4} R_{1} R_{3} R_{2} R_{4} \square$ $C_{1} C_{2} C_{3} C_{4} R_{1} R_{3} R_{2} \square$ $C_{1} C_{2} C_{3} C_{4} R_{2} R_{1} R_{3} R_{4} \square$ $C_{1} C_{2} C_{3} C_{4} R_{2} R_{1} R_{3} \square$ $C_{1} C_{2} C_{3} C_{4} R_{2} R_{1} \square$

Search Trees

Restricted search trees

- refinement strategies make the search simpler by only considering derivations which satisfy a given property
- i.e., trees with a given shape
- a search tree can be reduced by imposing conditions on the successors of a node N, by restricting the clauses D_{i} and D_{j} which can produce resolvents starting from N

Linear Resolution

Linear derivations

A linear derivation of C_{m} from $\left\{C_{1}, . ., C_{n}\right\}$ is a sequence

$$
\left\langle C_{1}, . ., C_{n}, C_{n+1}, . ., C_{m}\right\rangle
$$

such that

- C_{n+1} is the resolvent of two clauses of $\left\{C_{1}, . ., C_{n}\right\}$ (header clauses)
- for every $i>n+1, C_{i}$ is the resolvent of C_{i-1} and another clause C_{j}, with $j<i-1$

Linear Resolution

Properties

Linear resolution is complete: $\operatorname{UNSAT}(\mathcal{C})$ iff there exists a linear refutation of \mathcal{C}

- derivations can be restricted to linear derivations
- search trees can be restricted to linear search trees
what's wrong the the search tree and the resolution tree above?
In a derivation of \mathcal{C} from \mathcal{C}, it is not necessary to try all the clauses in \mathcal{C} as a starting point for the refutation (of $\neg C$)
- if a set \mathcal{C} is satisfiable and $\mathcal{C} \cup \neg \mathcal{C}$ is not, then there exists a linear refutation starting from $\neg C$

Input Resolution

Input derivations

An input derivation of C_{m} from $\left\{C_{1}, . ., C_{n}\right\}$ is a sequence

$$
\left\langle C_{1}, . ., C_{n}, C_{n+1}, . ., C_{m}\right\rangle
$$

such that

- for every $i>n, C_{i}$ is a resolvent of $C_{k} \in\left\{C_{1}, . ., C_{n}\right\}$ and another $C_{j}(j<i)$

Example

$$
\begin{aligned}
& \qquad \begin{array}{lll}
C_{1}=\neg p(x) \vee q(x) \\
C_{4}=s(a), & C_{2}=\neg r(x) \vee \neg q(x) \quad C_{5}=\neg s(x) \vee p(x)
\end{array} \\
& \\
& \\
& R_{1}=\neg p(x) \vee \neg r(x) \\
& R_{2}=\neg s(x) \vee \neg r(x) \\
& \text { - input refutation from } C_{1}: \\
& R_{3}=\neg s(a) \\
& R_{4}=\square
\end{aligned}\left(C_{1}, C_{2}\right)
$$

Input Resolution

Input derivations

An input derivation of C_{m} from $\left\{C_{1}, . ., C_{n}\right\}$ is a sequence

$$
\left\langle C_{1}, . ., C_{n}, C_{n+1}, . ., C_{m}\right\rangle
$$

such that

- for every $i>n, C_{i}$ is a resolvent of $C_{k} \in\left\{C_{1}, . ., C_{n}\right\}$ and another $C_{j}(j<i)$

Example

$$
\begin{aligned}
& \qquad C_{1}=\neg p(x) \vee q(x) \quad C_{2}=\neg r(x) \vee \neg q(x) \quad C_{3}=r(a) \\
& C_{4}=s(a), \quad C_{5}=\neg s(x) \vee p(x) \\
& \\
& R_{1}=p(a) \\
& R_{2}=q(a) \\
& \hline \text { input refutation from } C_{5}:\left(C_{4}, C_{5}\right) \\
& R_{3}=\neg r(a) \\
& R_{4}=\square \\
& \hline
\end{aligned}\left(R_{2}, C_{2}\right)
$$

Input Resolution

Example: $C_{1}=p \vee q, C_{2}=\neg q, C_{3}=r \vee q, C_{4}=\neg r$

- input non-linear refutation from C_{1} :

$$
\begin{array}{ll}
R_{1}=p & \left(C_{1}, C_{2}\right) \\
R_{2}=r & \left(C_{2}, C_{3}\right) \\
R_{3}=\square & \left(R_{2}, C_{4}\right)
\end{array}
$$

- since R_{1} is not involved in the rest of the derivation, we can build an input linear refutation from the first one:

$$
\begin{array}{ll}
R_{1}=r & \left(C_{2}, C_{3}\right) \\
R_{2}=\square & \left(R_{1}, C_{4}\right)
\end{array}
$$

Input Resolution

Lemma

Given an input non-linear derivation of R_{m}, it is possible to construct an input linear derivation of R_{m}

Proof.

Let $C_{1}, . ., C_{n}, R_{1}, . ., R_{m}$ an input non-linear derivation of R_{m}
(1) let $R_{k+1}(n+1 \leq k \leq m)$ the first resolvent which is non-linearly derivated
(2) R_{k+1} is the resolvent of $C \in\left\{C_{1}, . ., C_{n}\right\}$ and $R_{j}(1 \leq j<k)$
(3) for input resolution, R_{k+1} and R_{k} cannot resolve with each other
(4) for $(3$, it is possible to generate two independent derivations

- $C_{1}, . ., C_{n}, R_{1}, . ., R_{k}, .$. (linear until R_{k})
- $C_{1}, . ., C_{n}, R_{1}, . ., R_{j}, R_{k+1}, .$. (linear until R_{k+1})
(5) one of these derivations will terminate in R_{m}
we can linearize such derivation by further applying the lemma to it

Input Resolution

(counter)Ex.: $C_{1}=p \vee q, C_{2}=\neg p \vee q, C_{3}=r \vee \neg q, C_{4}=\neg r \vee \neg q$

- non-input non-linear.

$$
\begin{array}{ll}
R_{1}=q \vee q & \left(C_{1}, C_{2}\right) \\
R_{2}=\neg q \vee \neg q & \left(C_{3}, C_{4}\right) \\
R_{3}=\square & \left(R_{1}, R_{2}\right)
\end{array}
$$

- for every non-linear derivation there exists a linear equivalent one:

$$
\begin{array}{ll}
R_{1}=q \vee q & \left(C_{1}, C_{2}\right) \\
R_{2}=r & \left(R_{1}, C_{3}\right) \\
R_{3}=\neg q & \left(R_{2}, C_{4}\right) \\
R_{4}=\square & \left(R_{3}, R_{1}\right)
\end{array}
$$

- is it possible to find an input derivation for every non-input derivation?

Input Resolution

Input resolution is not complete

It is not possible to say that, for every unsatisfiable set of clauses, there exists an input refutation

Ex. $\quad p \vee q$
$\neg p \vee r$
$p \vee \neg q$
$s \vee q$
$s \vee \neg q$
$\neg s \vee \neg r$

Directed Resolution (Wos-Robinson-Carson, 1965)

Directed derivations

A directed derivation of C_{m} from $\left\{C_{1}, . ., C_{n}\right\}$, with a support set $S \subset \mathcal{C}$, is a sequence $\left\langle C_{1}, . ., C_{n}, C_{n+1}, . ., C_{m}\right\rangle$ such that

- for every $i>n, C_{i}$ is a resolvent of two previous clauses in the sequence, such that at least one of them does not belong to S
- clauses in S are support clauses, while clauses in $\mathcal{C} \backslash S$ are goal clauses
- this technique is motivated by the fact that:
- suppose we want to prove B from $A_{1} \wedge . . \wedge A_{k}$
- i.e., that $A_{1} \wedge . . \wedge A_{k} \wedge \neg B$ is unsatisfiable
- in this case, $A_{1} \wedge . . \wedge A_{k}$ is usually satisfiable in itself
- therefore, it might be wise to avoid resolving two clauses of such set
- the support set identifies the subset of \mathcal{C} which is supposed to be satisfiable (the result to be proven is not in the support set)

Directed Resolution (Wos-Robinson-Carson, 1965)

Example

$$
\begin{aligned}
& \mathcal{C}=\left\{C_{1}=s \vee t, \quad C_{2}=\neg s \vee p, \quad C_{3}=\neg q \vee r, \quad C_{4}=q \vee \neg p,\right. \\
& \left.C_{5}=u \vee \neg r, \quad C_{6}=\neg u, \quad C_{7}=\neg t\right\} \\
& S=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& \text { directed } \\
& R_{1}=s \quad\left(C_{1}, C_{7}\right) \\
& R_{2}=p \quad\left(R_{1}, C_{2}\right) \\
& R_{3}=q \quad\left(R_{2}, C_{4}\right) \\
& R_{4}=r \quad\left(R_{3}, C_{3}\right) \\
& R_{5}=u \quad\left(R_{4}, C_{5}\right) \\
& R_{6}=\square \quad\left(R_{5}, C_{6}\right) \\
& \text { non-directed } \\
& R_{1}=t \vee p \quad\left(C_{1}, C_{2}\right) \\
& R_{2}=p \\
& \left(R_{1}, C_{7}\right) \\
& R_{3}=q \quad\left(R_{2}, C_{4}\right) \\
& R_{4}=r \quad\left(R_{3}, C_{3}\right) \\
& R_{5}=u \quad\left(R_{4}, C_{5}\right) \\
& R_{6}=\square \quad\left(R_{5}, C_{6}\right)
\end{aligned}
$$

Directed Resolution (Wos-Robinson-Carson, 1965)

Properties

Directed resolution is complete: if $\operatorname{UNSAT}(\mathcal{C})$ and $S \subset \mathcal{C}$ is satisfiable, then there exists a directed refutation of \mathcal{C} with support set S

- this is not so useful if no way to find a satisfiable S is given

Heuristic for finding S

In practice, when trying a refutation of a conclusion from a set of premises, it is reasonable to consider the premises satisfiable

- premises: S
- negation of the conclusion (clause form): $\mathcal{C} \backslash S$
- if the premises are inconsistent, then every result can be derived
- yet, otherwise, \square can be derived from negating the conclusion

Ordered Resolution

Ordered derivations

An ordered derivation of C_{m} from $\left\{C_{1}, . ., C_{n}\right\}$ is a sequence

$$
\left\langle C_{1}, . ., C_{n}, C_{n+1}, . ., C_{m}\right\rangle
$$

such that

- for every $i>n, C_{i}$ is the resolvent of two previous clauses

$$
A_{1} \vee L_{11} \vee . . \vee L_{1 p} \quad \text { and } \quad \neg A_{2} \vee L_{21} \vee \ldots \vee L_{2 q}
$$

where A_{1} and A_{2} are unifiable with $M G U \sigma$ and order matters

- the literals of C_{i} are ordered as:

$$
\left(L_{11} \vee \ldots \vee L_{1 p} \vee L_{21} \vee \ldots \vee L_{2 q}\right) \sigma
$$

Ordered Resolution

(Non-)Properties

Ordered resolution is not complete

$$
\text { counterexample: } \quad\{p \vee q, \quad \neg q \vee p, \quad \neg p \vee r, \quad \neg r \vee \neg p\}
$$

Summary

Correctness and completeness

- Correctness: \square can be derived only if $\operatorname{UNSAT}(\mathcal{C})$
- Completeness: if $\operatorname{UNSAT}(\mathcal{C})$, then \square can be derived

	correct	complete
linear	\checkmark	\checkmark
input	\checkmark	no
directed	\checkmark	\checkmark (if SAT (S))
ordered	\checkmark	no

