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Introductionp

The problem

the method of saturation from a set C generates, if not limited, a big number
of clauses which are redundant or irrelevant

it is necessary to use systematic selection rules which make the process
simpler and computationally efficient

two kinds of criteria

simplification strategies: reducing the number of clauses
refinement strategies: limiting the generation of clauses

Terminology

C is the initial set of clauses

C′ is the current set of clauses (at some point during the deduction process
where we want to apply the rules)
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Simplification Strategiesp

1 Elimination of identical clauses
obviously, C `MGU � iff � can be derived by eliminating identical clauses
(apart from one copy, of course)

How to do it

if a clause is generated which already appears in C′, then it is not included

+ note that, in a computer algorithm, this is a check which may involve
comparing the new clause with the entire set C′ of existing clauses
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Simplification Strategiesp

2 Elimination of clauses with pure literals

a literal L is pure iff there does not exist in the set a literal ¬L′ where L and
L′ are unifiable

C `MGU � iff � can be derived after removing from C clauses with pure
literals

a clause with pure literals is useless for refutation since it will never be
eliminated by resolution

How to do it
clauses with pure literals are removed from the set

it is enough to apply this strategy once, since no new clauses with pure
literals will be generated
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Simplification Strategiesp

3 Elimination of tautological clauses

C `MGU � iff � can be derived from C after removing tautologies

How to do it

if a clause is generated which is a tautology, then it is not included in C′
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Simplification Strategiesp

Example: C = {p ∨ q, ¬p ∨ q, p ∨ ¬q, ¬p ∨ ¬q}
by applying all the simplification rules, the derivation comes to be

(1) p ∨ q
(2) ¬p ∨ q
(3) p ∨ ¬q
(4) ¬p ∨ ¬q
(5) q (1,2)
(6) p (1,3)
(7) ¬p (2,4)
(8) ¬q (3,4)
(9) � (5,8)

it must be noted that no other smart strategy has been used

pairs considered resolvents generated
first iteration 6 (6) 8 (8)
second iteration 19 (60) 9 (....)
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Simplification Strategiesp

4 Elimination of subsumed clauses
a clauses C subsumes another clause D if there exists a substitution α such
that Cα is a subformula of D: D = Cα ∨ D ′

Example

D = p(f (a), x) ∨ q(g(y), y) ∨ r(b) is subsumed by C = r(z) ∨ p(f (u), v) under
α = {u/a, v/x , z/b}
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Simplification Strategiesp

Lemma (subsumed clauses)

The set {C1, ..,Cn,C ,Cα ∨ D} is unsatisfiable iff {C1, ..,Cn,C} is

Proof (→).

¶ UNSAT ({C1, ..,Cn,C ,Cα ∨ D})
· suppose SAT ({C1, ..,Cn,C}): there exists a Herbrand interpretation IH which

makes all Ci and C true

¸ IH makes Cα true (since universal quantification is implicit), so that it also
makes Cα ∨ D true

¹ IH satisfies {C1, ..,Cn,C ,Cα ∨ D}: contradiction with ¶

º UNSAT ({C1, ..,Cn,C})
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Simplification Strategiesp

Lemma (subsumed clauses)

The set {C1, ..,Cn,C ,Cα ∨ D} is unsatisfiable iff {C1, ..,Cn,C} is

Proof (←).

¶ UNSAT ({C1, ..,Cn,C})
· there is no interpretation which makes Ci and C true

¸ there is no interpretation which makes Ci , C and Cα ∨ D true

¹ UNSAT ({C1, ..,Cn,C ,Cα ∨ D})
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Simplification Strategiesp

Procedure for deciding subsumption: is C1 subsumed by C2?

Procedure is subsumed by (C1,C2):
if (C2 is empty) then return YES: C1 is subsumed by C2 else

if for some p ((p(t̄) ∈ C2 and there is no p(t̄ ′) ∈ C1) ∨
(¬p(t̄) ∈ C2 and there is no ¬p(t̄ ′) ∈ C1))

then return NO: C1 is not subsumed by C2

L2 = q(t̄) is the first literal in C2

CL1 = {q(t̄ ′) ∈ C1 | t̄ ′ are terms}
for each (L ∈ CL1)
µL = MGU(L2, L) such that Domain (µL) ∩ Vars(L) = ∅
if (such µL exists)

C ′2 is C2 where L2 has been removed
C ′′2 = C ′2µL

if (is subsumed by (C1,C
′′
2 ) = YES) then

return YES: C1 is subsumed by C2

return NO: C1 is not subsumed by C2
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Simplification Strategiesp

Example:
C1 = p(a, s) ∨ p(b, z) ∨ ¬q(f (z), b)
C2 = p(x , y) ∨ ¬q(w , x)

L2 = p(x , y)

CL1 = {p(a, s), p(b, z)}
µp(a,s) = {x/a, y/s}
µp(b,z) = {x/b, y/z}
µp(a,s)  C ′′2 = ¬q(w , a)

q(w , a) and q(f (z), b) are not unifiable

µp(b,z)  C ′′2 = ¬q(w , b)

and MGU(q(w , b), q(f (z), b)) = {w/f (z)}
therefore, C1 is subsumed by C2
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Simplification Strategiesp

Example:
C1 = p(a, s) ∨ p(b, z) ∨ ¬q(f (z), b)
C2 = p(x , y) ∨ ¬q(w , x)

C2 L2 L (one from CL1) µL

1 p(x , y) ∨ ¬q(w , x) p(x , y) p(a, s) {x/a, y/s}
2 ¬q(w , a) ¬q(w , a) ¬q(f (z), b) fail
1 p(x , y) ∨ ¬q(w , x) p(x , y) p(b, z) {x/b, y/z}
2 ¬q(w , b) ¬q(w , b) ¬q(f (z), b) {w/f (x)}
3 �: YES
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Search Treesp

Derivations

A derivation of C from {C1, ..,Cn} is a sequence 〈C1, ..,Cn,R1, ..,Rm〉 such that

every Ri is the resolvent of two previous clauses

no resolution step is done more than once

Rm = C

Refutations

A refutation of {C1, ..,Cn} is a derivation of � from {C1, ..,Cn}

Facts

a derivation is a correct deduction (by correctness of MGU resolution)

if UNSAT (C), then there exists a refutation for C (by completeness of MGU
resolution)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1



Search Treesp

Search tree T of {C1, .., Cn}
C1 is the root of T

Ci+1 is a node of T , where Ci is its (direct) predecessor (1 ≤ i < n)

let Np be the set of predecessors of the node N, plus N itself

every node N of level i ≥ n has, as successors, all clauses R such that

R is a resolvent of two clauses belonging to Np

R /∈ Np

Properties

every path from C1 to a node N is a derivation of N

every possible derivation is represented by a path in the search tree

the tree for C contains all the resolvents for C
if � is a resolvent, then there is at least a node labeled with �
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Search Treesp

Derivations and search trees
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Search Treesp

Derivations and search trees
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Search Treesp

Restricted search trees
refinement strategies make the search simpler by only considering derivations
which satisfy a given property

i.e., trees with a given shape

a search tree can be reduced by imposing conditions on the successors of a
node N, by restricting the clauses Di and Dj which can produce resolvents
starting from N
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Linear Resolutionp

Linear derivations

A linear derivation of Cm from {C1, ..,Cn} is a sequence

〈C1, ..,Cn,Cn+1, ..,Cm〉

such that

Cn+1 is the resolvent of two clauses of {C1, ..,Cn} (header clauses)

for every i > n + 1, Ci is the resolvent of Ci−1 and another clause Cj , with
j < i − 1
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Linear Resolutionp

Properties

Linear resolution is complete: UNSAT (C) iff there exists a linear refutation of C
derivations can be restricted to linear derivations

search trees can be restricted to linear search trees

+ what’s wrong the the search tree and the resolution tree above?

In a derivation of C from C, it is not necessary to try all the clauses in C as a
starting point for the refutation (of ¬C )

if a set C is satisfiable and C ∪ ¬C is not, then there exists a linear refutation
starting from ¬C
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Input Resolutionp

Input derivations

An input derivation of Cm from {C1, ..,Cn} is a sequence

〈C1, ..,Cn,Cn+1, ..,Cm〉

such that

for every i > n, Ci is a resolvent of Ck ∈ {C1, ..,Cn} and another Cj (j < i)

Example

C1 = ¬p(x) ∨ q(x) C2 = ¬r(x) ∨ ¬q(x) C3 = r(a)
C4 = s(a), C5 = ¬s(x) ∨ p(x)

input refutation from C1:

R1 = ¬p(x) ∨ ¬r(x) (C1,C2)
R2 = ¬s(x) ∨ ¬r(x) (R1,C5)
R3 = ¬s(a) (R2,C3)
R4 = � (R3,C4)
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Input Resolutionp

Input derivations

An input derivation of Cm from {C1, ..,Cn} is a sequence

〈C1, ..,Cn,Cn+1, ..,Cm〉

such that

for every i > n, Ci is a resolvent of Ck ∈ {C1, ..,Cn} and another Cj (j < i)

Example

C1 = ¬p(x) ∨ q(x) C2 = ¬r(x) ∨ ¬q(x) C3 = r(a)
C4 = s(a), C5 = ¬s(x) ∨ p(x)

input refutation from C5:

R1 = p(a) (C4,C5)
R2 = q(a) (R1,C1)
R3 = ¬r(a) (R2,C2)
R4 = � (R3,C3)
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Input Resolutionp

Example: C1 = p ∨ q, C2 = ¬q, C3 = r ∨ q, C4 = ¬r

input non-linear refutation from C1:
R1 = p (C1,C2)
R2 = r (C2,C3)
R3 = � (R2,C4)

since R1 is not involved in the rest of the derivation, we can build an input
linear refutation from the first one:

R1 = r (C2,C3)
R2 = � (R1,C4)
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Input Resolutionp

Lemma
Given an input non-linear derivation of Rm, it is possible to construct an input
linear derivation of Rm

Proof.
Let C1, ..,Cn,R1, ..,Rm an input non-linear derivation of Rm

¶ let Rk+1 (n + 1 ≤ k ≤ m) the first resolvent which is non-linearly derivated

· Rk+1 is the resolvent of C ∈ {C1, ..,Cn} and Rj (1 ≤ j < k)

¸ for input resolution, Rk+1 and Rk cannot resolve with each other

¹ for ¸, it is possible to generate two independent derivations

C1, .., Cn, R1, .., Rk , .. (linear until Rk)
C1, .., Cn, R1, .., Rj , Rk+1, .. (linear until Rk+1)

º one of these derivations will terminate in Rm

+ we can linearize such derivation by further applying the lemma to it
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Input Resolutionp

(counter)Ex.: C1 = p ∨ q, C2 = ¬p ∨ q, C3 = r ∨ ¬q, C4 = ¬r ∨ ¬q

non-input non-linear:
R1 = q ∨ q (C1,C2)
R2 = ¬q ∨ ¬q (C3,C4)
R3 = � (R1,R2)

for every non-linear derivation there exists a linear equivalent one:
R1 = q ∨ q (C1,C2)
R2 = r (R1,C3)
R3 = ¬q (R2,C4)
R4 = � (R3,R1)

is it possible to find an input derivation for every non-input derivation?
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Input Resolutionp

Input resolution is not complete

It is not possible to say that, for every unsatisfiable set of clauses, there exists an
input refutation

Ex. p ∨ q
¬p ∨ r
p ∨ ¬q
s ∨ q
s ∨ ¬q
¬s ∨ ¬r
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Directed Resolution (Wos-Robinson-Carson, 1965)p

Directed derivations

A directed derivation of Cm from {C1, ..,Cn}, with a support set S ⊂ C, is a
sequence 〈C1, ..,Cn,Cn+1, ..,Cm〉 such that

for every i > n, Ci is a resolvent of two previous clauses in the sequence, such
that at least one of them does not belong to S

clauses in S are support clauses, while clauses in C \ S are goal clauses

this technique is motivated by the fact that:

suppose we want to prove B from A1 ∧ .. ∧ Ak

i.e., that A1 ∧ .. ∧ Ak ∧ ¬B is unsatisfiable
in this case, A1 ∧ .. ∧ Ak is usually satisfiable in itself
therefore, it might be wise to avoid resolving two clauses of such set
the support set identifies the subset of C which is supposed to be satisfiable
(the result to be proven is not in the support set)
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Directed Resolution (Wos-Robinson-Carson, 1965)p

Example

C = {C1 = s ∨ t, C2 = ¬s ∨ p, C3 = ¬q ∨ r , C4 = q ∨ ¬p,
C5 = u ∨ ¬r , C6 = ¬u, C7 = ¬t}

S = {C1, C2, C3, C4, C5}

directed
R1 = s (C1,C7)
R2 = p (R1,C2)
R3 = q (R2,C4)
R4 = r (R3,C3)
R5 = u (R4,C5)
R6 = � (R5,C6)

non-directed
R1 = t ∨ p (C1,C2)
R2 = p (R1,C7)
R3 = q (R2,C4)
R4 = r (R3,C3)
R5 = u (R4,C5)
R6 = � (R5,C6)
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Directed Resolution (Wos-Robinson-Carson, 1965)p

Properties

Directed resolution is complete: if UNSAT (C) and S ⊂ C is satisfiable, then there
exists a directed refutation of C with support set S

this is not so useful if no way to find a satisfiable S is given

Heuristic for finding S

In practice, when trying a refutation of a conclusion from a set of premises, it is
reasonable to consider the premises satisfiable

premises: S

negation of the conclusion (clause form): C \ S

if the premises are inconsistent, then every result can be derived

yet, otherwise, � can be derived from negating the conclusion
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Ordered Resolutionp

Ordered derivations

An ordered derivation of Cm from {C1, ..,Cn} is a sequence

〈C1, ..,Cn,Cn+1, ..,Cm〉

such that

for every i > n, Ci is the resolvent of two previous clauses

A1 ∨ L11 ∨ .. ∨ L1p and ¬A2 ∨ L21 ∨ .. ∨ L2q

where A1 and A2 are unifiable with MGU σ and order matters

the literals of Ci are ordered as:

(L11 ∨ .. ∨ L1p ∨ L21 ∨ .. ∨ L2q)σ
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Ordered Resolutionp

(Non-)Properties

Ordered resolution is not complete

counterexample: {p ∨ q, ¬q ∨ p, ¬p ∨ r , ¬r ∨ ¬p}

�

p

p ∨ q ¬q ∨ p

¬p

¬p ∨ r ¬r ∨ ¬p

p ∨ q ¬q ∨ p ¬p ∨ r ¬r ∨ ¬p

q ∨ r

r ∨ p

p ∨ ¬p

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 8 / 1



Summaryp

Correctness and completeness

Correctness: � can be derived only if UNSAT (C)

Completeness: if UNSAT (C), then � can be derived

correct complete
linear X X
input X no
directed X X(if SAT (S))
ordered X no
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