Computational Logic

Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL LOGIC (EMCL) SCHOOL OF COMPUTER SCIENCE TECHNICAL UNIVERSITY OF MADRID damiano@fi.upm.es

Academic Year 2009/2010

Introduction

SLD: Selection function in Linear resolution for Definite clauses

• combines linear, input, directed and ordered strategies on a particular class of clauses

Horn clauses

• at most one non-negated literal (if it exists, it's the first in the clause)

•
$$A \vee \neg B_1 \vee \neg B_2$$

•
$$\neg B_1 \lor \neg B_2$$

- clauses without the non-negated literal form the goal set
- clauses with the non-negated literal form the support set

Introduction

Definition (SLD resolution)

An SLD derivation of C_m from a set $\{C_1, ..., C_n\}$ of Horn clauses (with the non-negated literal in the first place, if it exists) is a sequence $\langle C_1, ..., C_i, ..., C_n, C_{n+1}, ..., C_m \rangle$ such that

- C_{n+1} is the resolvent of C_i (goal clause) and another $C \in \{C_1, ..., C_n\}$
- for every j > n + 1, C_j is the resolvent of C_{j-1} and another $C \in \{C_1, ..., C_n\}$
- every resolution step takes the form

$$\frac{L' \vee C'}{\neg L'' \vee C''} \quad \rightsquigarrow \quad (C' \vee C'')(MGU(L',L''))$$

Properties: SLD resolution is		
• linear	• directed	
• input	• ordered	

LUSH resolution

The selection rule

In SLD, the rule requires the factor to be the first literal in both clauses

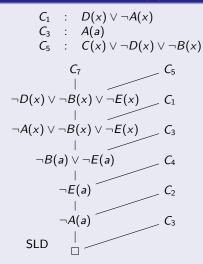
• as a consequence, the goal clause does not contain a non-negated literal and has to resolve with a clause whose first literal in non-negated

LUSH: Linear resolution with Unrestricted Selection for Horn clauses

• linear, input and directed but not ordered: every literal can be resolved with any other

LUSH resolution

Example: goal C_7 : $\neg C(x) \lor \neg E(x)$



 $\begin{array}{rcl} C_2 & : & E(x) \lor \neg A(x) \\ C_4 & : & B(a) \end{array}$ C_6 : $B(x) \lor \neg D(x) \lor \neg C(x)$ C_7 $\neg A(x) \lor \neg C(x)$ C_3 $\neg C(a)$ C_5 $\neg D(a) \lor \neg B(a)$ C_1 $\neg A(a) \lor \neg B(a)$ C_3 $\neg B(a)$ CA LUSH

Lemma

The support set of a set of Horn Clauses is satisfiable

Proof.

1 the clauses of the support set have a non-negated literal

 ${f \it e}$ an interpretation which assigns t to such literals makes the set true

Corollary

If there exists a refutation of a set of Horn clauses, then there exists a directed refutation on the support set

Lemma

If there exists a LUSH refutation of a set of Horn clauses, then there exists an SLD refutation of the same set

Theorem

SLD resolution is complete for Horn clauses: if a set of Horn clauses is unsatisfiable, then there exists an SLD refutation for it

Proof.

- UNSAT(H)
- **1** there exists a refutation of H (completeness of resolution)
- ${f \it 0}$ there exists a directed refutation ${\cal R}$ (the support set is satisfiable)
 - every step involves a goal clause or an intermediate resolvent
- ${f 8}$ ${\cal R}$ is an input refutation
 - every step requires a clause with a non-negated literal, i.e., a support clause
 - support clauses are input clauses
- ${f 0}$ if there exists an input refutation, then there exists a linear input one ${\cal R}'$
 - $\bullet \ \mathcal{R}'$ is directed, input and linear, that is, LUSH
- **6** there exists an SLD refutation \mathcal{R}'' (lemma above)

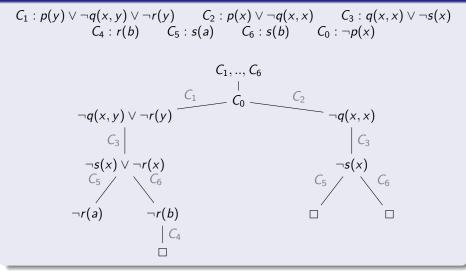
When studying a set of Horn clauses

- possible refutations can be restricted to SLD refutations
- \bullet search trees can be restricted to SLD search trees for \Box

Depth and breadth

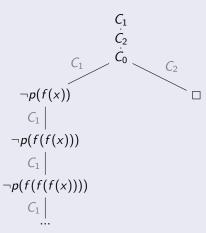
- breadth-first SLD is complete, depth-first is not
- in the depth-first approach, it is crucial how to choose the order for selecting support clauses to be resolved with the current goal clause
 - computation function
- depending on the search strategy
 - some refutations are not found
 - some derivations do not terminate

Example



Example: $C_1: p(x) \lor \neg p(f(x)), C_2: p(a), C_0: \neg p(y)$

• a depth search with a computation function which chooses the first support clause does not terminate



Example: $C_1: p(x) \vee \neg p(f(x)), C_2: p(a), C_0: \neg p(y)$

• but a refutation can be obtained by changing the order of the support clauses (C₂ before C₁)

