
Computational Logic
Introduction to Logic Programming

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 1 / 1

Programsp

Terminology

a Horn clause without negated literals is a fact

a Horn clause which has a non-negated literal and the other literals negated
is a rule

the non-negated literal is the head
the sequence of negated literals is the body

a set of rules with the same head predicate p is a procedure, whose name is p

a logic program is a set of procedures

Rule syntax

A ∨ ¬B1 ∨ ¬B2 B1 ∧ B2 → A A← B1, B2. A :- B1,B2.
A A A. A.

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 2 / 1

Queriesp

Execution
a goal is a Horn clause with all literals negated

the deduction whose correctness has to be verified has the program as
premise, and the goal as conclusion

the execution of a logic program on a given goal consists of verifying if the
goal can be deduced from the program, and, if it can, computing the values
of the goal variables which give the answer

SLD resolution is used, with the goal as the initial goal clause

most implementations of this kind of languages use a computation rule which
follows the order in which rules are written (top-down) and depth search with
backtracking

infinite loops may occur

Query syntax

¬B1 ∨ ¬B2 B1 ∧ B2 ← B1, B2. ?- B1,B2.

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 3 / 1

Propertiesp

Limitations: some rules are not allowed
P1 ∧ P2 → ¬Q

implication cannot end in something which is not true

P1 ∧ P2 → Q1 ∨ Q2

it is not possible to state a disjunction

P1 ∧ ¬P2 → Q

premises must be true

Negation

complete knowledge about the universe is assumed (closed-world hypothesis)

negation is simulated by negation as failure: what cannot be proven is false

dangerous, but useful in finite domains

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 4 / 1

Executionp

To prove a literal C
1 put C and the corresponding answer literal in a stack S
2 repeat until the top of S is an answer literal and no further steps can be

preformed
1 pop from S a literal L
2 choose a rule or fact whose head unifies with L (MGU α)

push in S the literals (ordered) of the body of the rule
apply α to the complete S
rename variables in S

3 if not possible, fail

Backtracking

When the choice of the rule whose head unifies with L comes to be impossible, the
search must go back to a choice point above in the tree and take another literal L′

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5 / 1

Examplep

Parents and grandparents

1 father(a,b).
2 mother(b,c).
3 grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
4 parent(X,Y) :- father(X,Y).
5 parent(X,Y) :- mother(X,Y).

who is the grandparent of c? ?- grandparent(X,c).
grandparent(X,c), ans(X). 3, {X3/X , Z3/C}
parent(X,Y3), parent(Y3,c), ans(X) 4, {X4/X , Y4/Y3}
father(X,Y3), parent(Y3,c), ans(X) 1, {X/a, Y3/b}
parent(b,c), ans(a) 4, {X ′

4/b, Y ′
4/c}

father(b,c), ans(a) fail , 5, {X5/b, Y5/c}
mother(b,c), ans(a) 2, {}
ans(a)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

Examplep

Parents and grandparents

1 father(a,b).
2 mother(b,c).
3 grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
4 parent(X,Y) :- father(X,Y).
5 parent(X,Y) :- mother(X,Y).

who is the grandchild of a? ?- grandparent(a,X).
grandparent(a,X), ans(X). 3, {X3/a, Z3/X}
parent(a,Y3), parent(Y3,X), ans(X) 4, {X4/a, Y4/Y3}
father(a,Y3), parent(Y3,X), ans(X) 1, {Y3/b}
parent(b,X), ans(X) 4, {X ′

4/b, Y ′
4/X}

father(b,X), ans(X) fail , 5, {X5/b, Y5/X}
mother(b,X), ans(X) 2, {X/c}
ans(c)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

Examplep

Parents and grandparents

1..5

gp(X,c)

p(X,Y3),p(Y3,c)

3

f(X,Y3),p(Y3,c)

4

m(X,Y3),p(Y3,c)

5

p(b,c)

1,X/a

p(c,c)

2,X/b

f(b,c)

4

m(b,c)

5

f(c,c)

4

m(c,c)

5

�

1

ans(a)

2

�

1

�

2

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6 / 1

Operational vs. declarativep

Operational

the program defines a series of procedures (the heads) using calls to other
procedures (the literals in the body)

the goal is a series of calls to be executed sequentially (in the order they are
written), with the possibility to go back

Declarative
the program declares the information about the problem to be solved

the problem is formulated as a question

the task is proving that the question is a correct conclusion of the premises
(program)

an execution is a proof

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

Operational vs. declarativep

Applications

arithmetics (reversible)

data structures, recursion

database systems

search problems

rule-based expert systems

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7 / 1

