Computational Logic

Automated Theorem Proving

Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL Locic (EMCL)
ScuooL oF COMPUTER SCIENCE
TECHNICAL UNIVERSITY OF MADRID
damiano@fi.upm.es

Academic Year 2009/2010

D. Zanardini (damiano@fi.upn.es) Computational Logic Ac. Year 2009/2010

Introduction

The ingredients

o first-order logic with equality

@ yet another inference rule: paramodulation
The problem

@ the Robbins problem: that every Robbins algebra is a Boolean algebra
The tool

o the EQP theorem prover

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Equality

@ axioms:
o
()
()
o

@ conjecture:

even(sum(twoSquared, b))

twoSquared = four

Vx(zero(x) — difference(four, x) = sum(four, x))
zero(b)

o even(difference(twoSquared, b))

@ the conjecture could seem like a logical consequence of the axioms

@ however, this is due to the fact that a human knows what equality means

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Equality

A non-standard interpretation

D = {cat,dog} difference(cat, cat) = dog
b = cat difference(cat, dog) = cat
twoSquared = cat difference(dog, cat) = cat
four = cat difference(dog,dog) = cat
sum(cat,cat) = cat (cat=cat) = t
sum(cat,dog) = cat (cat=dog) = f
sum(dog,cat) = cat (dog=cat) = t (!)
sum(dog,dog) = cat (dog=dog) = f ()
even(cat) = t zero(cat) = t
even(dog) = f zero(dog) = f
This interpretation satisfies the axioms but not the conjecture

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Equality

Equality axioms

In order to establish the above logical consequence, it is necessary to add the
behavior of = /2 as a set of non-logical axioms

o reflexivity: Vx(x = x)
e simmetry: VxVy(x =y — y = x)
e transitivity: VxVyVz((x =y Ay =z) — x = z)
e function substitution: if x =y, then f(x) = f(y)
o for every argument of every function: Ex.
VxVyVz(x =y — sum(x, z) = sum(y, z))
o predicate substitution: if x = y and p(x) is true, then p(y) is also true

o for every argument of every predicate: Ex.
VxVy(x = y — (even(x) — even(y)))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Paramodulation (Robinson-Wos, 1969)

Paramodulants
@ paramodulation is an inference rule which generates all equal versions of
clauses modulo the equality information

@ it does the job of all equality axioms except reflexivity

o the paramodulant is the resulting clause

Ac. Year 2009/2010 4/1

Computational Logic

D. Zanardini (damiano@fi.upm.es)

Paramodulation (Robinson-Wos, 1969)

Formal definition

@ two parent clauses: from clause F and input clause /

@ F must contain a positive equality literal E
F = (=) Vv C
@ one of the arguments of E must unify (with MGU «) with a subterm ¢t of /
I = D[t] and (a= MGU(t;,t) or a= MGU(t,t))
o tis replaced in | by the other argument of E
I~ I(t/ty) or | ~ I(t/t)
@ « is applied to the new / and the remaining part of F

P = (CVI(t/t)a or P = (CVI(t/t))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Paramodulation (Robinson-Wos, 1969)

e F = CV(tl tg) = P(}/) \ (f(X):g(a))
o I = p(g(2),f(h(f(a),f(p)))) Vv q(f(a))
e t; = f(x) unifies with t = f(h(f(a), f(b))) with MGU

a = {x/h(f(a), (b))}

o I' = I(t/t) = plg(2),g(a) Vv q(f(a))

(CV I

(p(x,y) Vv plg(2).g(a)) Vv q(f(a))) ({x/h(f(a),f(b))})
p(h(f() £(b),y) Vv plg(2).g(a)) Vv q(f(a))

Paramodulation (Robinson-Wos, 1969)

Lemma (Correctness)

P is a logical consequence of F N\ |

® suppose =P, i.e., =7((C V1))

—(/'a) (from @ and V elimination)

—(/a) (from @ and /o = I’ (definition of «))
=/ (from ® and properties of substitutions)
=(F A) (from @)

@ e ®®

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Paramodulation (Robinson-Wos, 1969)

Real-life example

o/ = n(n(n(x)+y)+ n(x+y)) =y
o F = n(n(n(x)+y) + n(x+y)) =y
o (renaming) | = n(n(n(x")+y)+n(x'+y") =y ~ t
e (renaming) F = n(n(n(x")+y")+n(x"+y") =y" ~ t
oa = { X/(n(x")+y"), y'/(n(x"+y")) }
o I = n(y"n(x+y)) =y

P = la
° = n(y"+n(n(x")+y"+n(x"+y"))) = n(x"+y")

= n(n(n(x//+y//)+n(//)+y /) y//) — (X//+y//)]

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

When machines do it better

@ not only HAL...

@ became “operational” on January 12, 1997

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5/1

EQP and the Robbins problem

When machines do it better

@ ...or Deep(er) Blue

@ on May 11th 1997, won a six-game match by two wins to one with three
draws against world champion Garry Kasparov

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5/1

EQP and the Robbins problem

A bit of history

Mathematicians have long struggled against a difficult algebra problem: that the
definition of a Boolean algebra is equivalent to that of a Robbins algebra (from
Herbert Ellis Robbins (1915-2001))

@ one direction (that every Boolean algebra is a Robbins algebra) is easy

@ but the other one (that every Robbins algebra is a Boolean algebra) is
extremely difficult

D. Zanardini (damiano@fi.upm.es) Computational Logic

Ac. Year 2009/2010

EQP and the Robbins problem

A partial result

@ in 1979, Larry Wos told his colleague Steve Winker to attack the problem by
strengthening the hypotheses
i.e., find conditions which, if true, would solve the problem

o Winker: what does such an attack give me as a mathematician?

o Wos: nothing; but as a gambler it tells you a lot

@ in 1990, Steve Winker showed that each of two conditions (the Winker
conditions) are sufficient in order to make a Robbins algebra Boolean

@ the proof was by hand, with insight from theorem prover searches
o lately, automated proofs were found (1992 for the first condition, 1996 for
the second)

@ yet, the problems remains: does any Robbins algebra satisfy at least one of
the Winker conditions?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

Boolean axioms

commutativity X+y=y+x X y=y x
associativity (x+y)+z=x+(y+2) (x-y)-z=x-(y-2)
zero 0+x=x+0=x 0-a=a-0=0
one l+a=a+1=1 l-a=a-1=a
distributivity | a+b-c=(a+b)-(a+c) |a-(b+c)=a-b+a-c

absorption | x-(x+y)=x+x-y=x
complementation | Vx3Jy(x-y =0Ax+y=1)
x-n(x)=0, x+n(x)=1

Robbins axioms

commutativity X+ty=y+x
associativity (x+y)+z=x+(y+2)
Robbins’ axiom | n(n(n(x) +y)+n(x+y)) =y

/1

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 5

EQP and the Robbins problem

How the problem is formulated

Given the Robbins axiom (and the equality axioms EQ), is it possible to prove the
second Winker condition?

@ this would demostrate that every Robbins algebra is a Boolean algebra
@ premises
(1) xty=y+x
(2) +y)+z=x+(y+2)
(3) n(n(n(x) +y)+ n(x+y)) =

@ conclusion (second Winker condition)

y

Sy (n(x + y) = n(x))

@ negated conclusion
(4) n(x+y)# n(x)
e is the set {(1),(2),(3)} U EQ U {(4)} satisfiable?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

When machines do it better (cont.)
@ in September 1996, William McCune startled Wos by bringing up the Robbins
problem, asserting | think we can get it

@ McCune suspected that a new program he had developed called EQP (for
equational prover) just might do the trick...

@ ...but confesses he was as amazed as anyone when, eight days later, the
computer spewed out a proof

@ hand-checking by McCune and several outside mathematicians confirmed
that it was indisputably correct

@ the proof took 678232.2 seconds, and generated 18K formulae

@ however, the final proof only consisted of 17 formulae

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

The proof

----- EQP 0.9, June 1996 --—--—-
The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996
UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

2 (wt=7) [1 -(a(x+y) = n(x)).

3 (wt=13) [0 n(a@(x)+y) + n(x+y)) =y.

5 (wt=18) [para(3,3)] n(n(n(x+y)+n(x)+y)+y) = n(x+y).

6 (wt=19) [para(3,3)] n@((x)+y)+x+y)+y) = n(n(x)+y).

17666 (wt=33) [para(24,16426),demod([17547])]
n(n(n(x)+x)+n(n(x) +x) +x+x+x+x) = n(n(@(x)+x)+x+x+x) .
———————————— end of proof -————-----———-

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

The proof

————— EQP 0.9, June 1996 --—--—-
The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996
UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

2 (wt=7) [1 -(a(x+y) = n(x)).

3 (wt=13) [0 n(a@(x)+y) + n(x+y)) = y.

5 (wt=18) [para(3,3)] n(n(a(x+y)+n(x)+y)+y) = n(x+y).

6 (wt=19) [para(3,3)] n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y).

17666 (wt=33) [para(24,16426),demod([17547])]
n(n(n(x)+x)+n(n(x)+x)+x+x+x+x) = n(n(n(x)+x)+x+x+x) .
———————————— end of proof --—-———------—-

o conflict: x =n(n(x)+x)+x+x+x y = n(n(x) + x) + x

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

EQP and the Robbins problem

According to senior Argonne mathematician Larry Wos

@ computers beating chess masters like Garry Kasparov may draw bigger
headlines, but solving the Robbins conjecture is a far bigger deal

@ if we're interested in track and we can't win a race against the high school
kids, how the hell are we going to get on the Olympic team? And now we've
finally reached that level

@ people don’'t want to think any machine can do something they can't do.
They don’t want to feel like they're becoming obsolete. They want to do it
themselves

@ we don't just prove theorems. We look at conjectures, we design circuits, we
solve puzzles, we prove properties of other programs

@ anyway, why would you want to program a computer to be vicious, crabby,
selfish, and inconsiderate, when humans do all of those things so very well?

v

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Other ATP resources

o ACL2, Agda, Carine, Coq, DCTP, E, Gandalf, Isabelle, Jape, KeY, Larch,
LCF, Lean, Matita, Otter, PhoX, Prover9, SETHEO, Tau, Twelf, Uclid,
Vampire, Waldmeister...

@ the Thousands of Problems for Theorem Provers (TPTP) Problem Library:
http://www.tptp.org/

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 6/1

Other ATP resources

CADE ATP System Competition (CASC)

o FOF (First-order form non-propositional theorems (axioms with a provable
conjecture)): Vampire won 8 times

o CNF (Mixed clause normal form really non-propositional theorems
(unsatisfiable clause sets)) : Vampire won 9 times

@ SAT (Clause normal form really non-propositional non-theorems (satisfiable
clause sets)): Gandalf won 5 times

o EPR (Effectively propositional clause normal form theorems and
non-theorems (clause sets)): DCTP won 3 times

o UEQ (Unit equality clause normal form really non-propositional theorems
(unsatisfiable clause sets)): \Waldmeister won 12 times

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Related problems

Proof verification

@ or proof checking

@ easier, decidable if every step can be checked by a primitive recursive function

| A

Interactive provers
@ a human user provides hints to the system

@ somehow between proving and checking

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Related problems

Model checking

@ a process is considered theorem proving if it consists of a traditional proof
obtained by axioms and inference rules

e from Model Checking vs. Theorem Proving: A Manifesto (Halpern-Vardi)

We argue that rather than representing an agent’s knowledge as a collection of
formulas, and then doing theorem proving to see if a given formula follows from an
agent’s knowledge base, it may be more useful to represent this knowledge by a
semantic model, and then do model checking to see if the given formula is true in
that model. We discuss how to construct a model that represents an agent’s
knowledge in a number of different contexts, and then consider how to approach
the model-checking problem.

@ brute-force enumeration of many possible states

@ yet, actual implementation are far from being brute-force

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010

Related problems

Hybrid theorem proving

@ model checking as an inference rule

Programs

@ programs which prove a particular theorem, with a (usually informal) proof
that termination with a certain result implies the theorem
@ works on huge (non-surveyable) proofs

o four color theorem (1976, later ATP proof in 2005, still huge)
o the game four in a line: first player wins

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 7/1

Industrial uses

@ mostly concentrated in integrated circuit design and verification

@ since the Pentium FDIV bug (1994), the complicated floating point units of
modern microprocessors have been designed with extra scrutiny

@ in the latest processors from AMD, Intel, and others, ATP has been used to
verify that division and other operations are correct

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2009/2010 8/1

