Computational Logic

Automated Theorem Proving

Damiano Zanardini
UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es

Academic Year 2009/2010

Introduction

A recipe

The ingredients

- first-order logic with equality
- yet another inference rule: paramodulation

The problem

- the Robbins problem: that every Robbins algebra is a Boolean algebra

The tool

- the EQP theorem prover

Equality

Example

- axioms:
- even(sum(twoSquared, b))
- twoSquared = four
- $\forall x(z e r o(x) \rightarrow \operatorname{difference}($ four,$x)=\operatorname{sum}(f o u r, x))$
- zero(b)
- conjecture:
- even(difference(twoSquared, b))
- the conjecture could seem like a logical consequence of the axioms
- however, this is due to the fact that a human knows what equality means

Equality

A non-standard interpretation

$$
\begin{align*}
& D=\{c a t, d o g\} \quad \text { difference }(c a t, c a t)=\text { dog } \\
& b=c a t \quad \text { difference }(c a t, d o g)=c a t \\
& \text { twoSquared }=\text { cat difference(dog,cat) }=c a t \\
& \text { four }=\text { cat } \quad \text { difference }(\text { dog, dog })=c a t \\
& \text { (cat=cat) }=\mathbf{t} \\
& (c a t=\operatorname{dog})=\mathbf{f} \\
& (d o g=c a t)=\mathbf{t} \tag{!}\\
& (\operatorname{dog}=\operatorname{dog})=\mathbf{f} \tag{!}\\
& \text { zero(cat) }=\mathbf{t} \\
& \text { zero(dog) }=\mathbf{f}
\end{align*}
$$

This interpretation satisfies the axioms but not the conjecture

Equality

Equality axioms

In order to establish the above logical consequence, it is necessary to add the behavior of $=/ 2$ as a set of non-logical axioms

- reflexivity: $\forall x(x=x)$
- simmetry: $\forall x \forall y(x=y \rightarrow y=x)$
- transitivity: $\forall x \forall y \forall z((x=y \wedge y=z) \rightarrow x=z)$
- function substitution: if $x=y$, then $f(x)=f(y)$
- for every argument of every function: Ex.

$$
\forall x \forall y \forall z(x=y \rightarrow \operatorname{sum}(x, z)=\operatorname{sum}(y, z))
$$

- predicate substitution: if $x=y$ and $p(x)$ is true, then $p(y)$ is also true
- for every argument of every predicate: Ex.

$$
\forall x \forall y(x=y \rightarrow(\operatorname{even}(x) \rightarrow \operatorname{even}(y)))
$$

Paramodulation (Robinson-Wos, 1969)

Paramodulants

- paramodulation is an inference rule which generates all equal versions of clauses modulo the equality information
- it does the job of all equality axioms except reflexivity
- the paramodulant is the resulting clause

Paramodulation (Robinson-Wos, 1969)

Formal definition

- two parent clauses: from clause F and input clause I
- F must contain a positive equality literal E

$$
F \equiv\left(t_{1}=t_{2}\right) \vee C
$$

- one of the arguments of E must unify (with $M G U \alpha$) with a subterm t of I

$$
I \equiv D[t] \quad \text { and } \quad\left(\alpha=M G U\left(t_{1}, t\right) \quad \text { or } \quad \alpha=M G U\left(t_{2}, t\right)\right)
$$

- t is replaced in I by the other argument of E

$$
I \rightsquigarrow I\left(t / t_{2}\right) \text { or } I \rightsquigarrow I\left(t / t_{1}\right)
$$

- α is applied to the new I and the remaining part of F

$$
P \equiv\left(C \vee I\left(t / t_{2}\right)\right) \alpha \quad \text { or } \quad P \equiv\left(C \vee I\left(t / t_{1}\right)\right) \alpha
$$

Paramodulation (Robinson-Wos, 1969)

Example

- $F \equiv C \vee\left(t_{1}=t_{2}\right) \equiv p(x, y) \vee(f(x)=g(a))$
- I $\equiv p(g(z), f(h(f(a), f(b)))) \vee q(f(a))$
- $t_{1} \equiv f(x)$ unifies with $t \equiv f(h(f(a), f(b)))$ with MGU

$$
\alpha=\{x / h(f(a), f(b))\}
$$

- $I^{\prime} \equiv I\left(t / t_{2}\right) \equiv p(g(z), g(a)) \vee q(f(a))$

$$
P \equiv\left(C \vee I^{\prime}\right) \alpha
$$

$$
\text { - } \quad \equiv(p(x, y) \vee p(g(z), g(a)) \vee q(f(a)))(\{x / h(f(a), f(b))\})
$$

$$
\equiv p(h(f(a), f(b)), y) \vee p(g(z), g(a)) \vee q(f(a))
$$

Paramodulation (Robinson-Wos, 1969)

Lemma (Correctness)

P is a logical consequence of $F \wedge I$

Proof.

(1) suppose $\neg P$, i.e., $\neg\left(\left(C \vee I^{\prime}\right) \alpha\right)$
(2) $\neg\left(I^{\prime} \alpha\right)$ (from 1 and \vee elimination)
(3) $\neg(I \alpha)$ (from (2) and $I \alpha=I^{\prime} \alpha$ (definition of α))
(4) $\neg /$ (from 3 and properties of substitutions)
© $\neg(F \wedge I)($ from © 4$)$

Paramodulation (Robinson-Wos, 1969)

Real-life example

- I $\equiv n(n(n(x)+y)+n(x+y))=y$
- $F \equiv n(n(n(x)+y)+n(x+y))=y$
- (renaming) $\boldsymbol{l} \equiv n\left(n\left(n\left(x^{\prime}\right)+y^{\prime}\right)+n\left(x^{\prime}+y^{\prime}\right)\right)=y^{\prime} \quad \rightsquigarrow \quad t$
- (renaming) $F \equiv n\left(n\left(n\left(x^{\prime \prime}\right)+y^{\prime \prime}\right)+n\left(x^{\prime \prime}+y^{\prime \prime}\right)\right)=y^{\prime \prime} \quad \rightsquigarrow \quad t_{1}$
- $\alpha=\left\{x^{\prime} /\left(n\left(x^{\prime \prime}\right)+y^{\prime \prime}\right), y^{\prime} /\left(n\left(x^{\prime \prime}+y^{\prime \prime}\right)\right)\right\}$
- $I^{\prime} \equiv n\left(y^{\prime \prime}+n\left(x^{\prime}+y^{\prime}\right)\right)=y^{\prime}$

$$
\begin{aligned}
P & \equiv I^{\prime} \alpha \\
& \equiv n\left(y^{\prime \prime}+n\left(n\left(x^{\prime \prime}\right)+y^{\prime \prime}+n\left(x^{\prime \prime}+y^{\prime \prime}\right)\right)\right)=n\left(x^{\prime \prime}+y^{\prime \prime}\right) \\
& \equiv n\left(n\left(n\left(x^{\prime \prime}+y^{\prime \prime}\right)+n\left(x^{\prime \prime}\right)+y^{\prime \prime}\right)+y^{\prime \prime}\right)=n\left(x^{\prime \prime}+y^{\prime \prime}\right)
\end{aligned}
$$

EQP and the Robbins problem

When machines do it better

- not only HAL...

- became "operational" on January 12, 1997

EQP and the Robbins problem

When machines do it better

- ...or Deep(er) Blue

- on May 11th 1997, won a six-game match by two wins to one with three draws against world champion Garry Kasparov

EQP and the Robbins problem

A bit of history

Mathematicians have long struggled against a difficult algebra problem: that the definition of a Boolean algebra is equivalent to that of a Robbins algebra (from Herbert Ellis Robbins (1915-2001))

- one direction (that every Boolean algebra is a Robbins algebra) is easy
- but the other one (that every Robbins algebra is a Boolean algebra) is extremely difficult

EQP and the Robbins problem

A partial result

- in 1979, Larry Wos told his colleague Steve Winker to attack the problem by strengthening the hypotheses
- i.e., find conditions which, if true, would solve the problem
- Winker: what does such an attack give me as a mathematician?
- Wos: nothing; but as a gambler it tells you a lot
- in 1990, Steve Winker showed that each of two conditions (the Winker conditions) are sufficient in order to make a Robbins algebra Boolean
- the proof was by hand, with insight from theorem prover searches
- lately, automated proofs were found (1992 for the first condition, 1996 for the second)
- yet, the problems remains: does any Robbins algebra satisfy at least one of the Winker conditions?

EQP and the Robbins problem

Boolean axioms

commutativity	$x+y=y+x$	$x \cdot y=y \cdot x$
associativity	$(x+y)+z=x+(y+z)$	$(x \cdot y) \cdot z=x \cdot(y \cdot z)$
zero	$0+x=x+0=x$	$0 \cdot a=a \cdot 0=0$
one	$1+a=a+1=1$	$1 \cdot a=a \cdot 1=a$
distributivity	$a+b \cdot c=(a+b) \cdot(a+c)$	$a \cdot(b+c)=a \cdot b+a \cdot c$
absorption	$x \cdot(x+y)=x+x \cdot y=x$	
complementation	$\forall x \exists y(x \cdot y=0 \wedge x+y=1)$	
	$x \cdot n(x)=0, x+n(x)=1$	

Robbins axioms

commutativity	$x+y=y+x$
associativity	$(x+y)+z=x+(y+z)$
Robbins' axiom	$n(n(n(x)+y)+n(x+y))=y$

EQP and the Robbins problem

How the problem is formulated

Given the Robbins axiom (and the equality axioms $E Q$), is it possible to prove the second Winker condition?

- this would demostrate that every Robbins algebra is a Boolean algebra
- premises
(1) $x+y=y+x$
(2) $(x+y)+z=x+(y+z)$
(3) $n(n(n(x)+y)+n(x+y))=y$
- conclusion (second Winker condition)

$$
\exists x \exists y(n(x+y)=n(x))
$$

- negated conclusion

$$
\text { (4) } n(x+y) \neq n(x)
$$

- is the set $\{(1),(2),(3)\} \cup E Q \cup\{(4)\}$ satisfiable?

EQP and the Robbins problem

When machines do it better (cont.)

- in September 1996, William McCune startled Wos by bringing up the Robbins problem, asserting I think we can get it
- McCune suspected that a new program he had developed called EQP (for equational prover) just might do the trick...
- ...but confesses he was as amazed as anyone when, eight days later, the computer spewed out a proof
- hand-checking by McCune and several outside mathematicians confirmed that it was indisputably correct
- the proof took 678232.2 seconds, and generated 18 K formulæ
- however, the final proof only consisted of 17 formulæ

EQP and the Robbins problem

The proof

----- EQP 0.9, June 1996 -----
The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996 UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

```
PROOF
2 (wt=7) [] - (n(x+y) = n(x)).
3 (wt=13) [] n(n(n(x)+y) + n(x+y)) = y.
5 (wt=18) [para(3,3)] n(n(n(x+y)+n(x)+y)+y) = n(x+y).
6 (wt=19) [para(3,3)] n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y).
...
17666 (wt=33) [para(24,16426),demod([17547])]
    n(n(n(x)+x)+n(n(x)+x)+x+x+x+x) = n(n(n(x)+x)+x+x+x).
------------ end of proof --------------
```


EQP and the Robbins problem

The proof

----- EQP 0.9, June 1996 -----
The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996 UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.
----------------- PROOF -------------------
2 (wt=7) [] $-(n(x+y)=n(x))$.
3 (wt=13) [] $n(n(n(x)+y)+n(x+y))=y$.
5 (wt=18) $[\operatorname{para}(3,3)] n(n(n(x+y)+n(x)+y)+y)=n(x+y)$.
6 (wt=19) $[\operatorname{para}(3,3)] n(n(n(n(x)+y)+x+y)+y)=n(n(x)+y)$.
...
17666 (wt=33) [para $(24,16426)$, demod $([17547])]$

$$
n(n(n(x)+x)+n(n(x)+x)+x+x+x+x)=n(n(n(x)+x)+x+x+x) .
$$

------------- end of proof ---------------

- conflict: $\quad x=n(n(x)+x)+x+x+x \quad y=n(n(x)+x)+x$

EQP and the Robbins problem

The derivation

EQP and the Robbins problem

According to senior Argonne mathematician Larry Wos

- computers beating chess masters like Garry Kasparov may draw bigger headlines, but solving the Robbins conjecture is a far bigger deal
- if we're interested in track and we can't win a race against the high school kids, how the hell are we going to get on the Olympic team? And now we've finally reached that level
- people don't want to think any machine can do something they can't do. They don't want to feel like they're becoming obsolete. They want to do it themselves
- we don't just prove theorems. We look at conjectures, we design circuits, we solve puzzles, we prove properties of other programs
- anyway, why would you want to program a computer to be vicious, crabby, selfish, and inconsiderate, when humans do all of those things so very well?

Other ATP resources

Provers

- ACL2, Agda, Carine, Coq, DCTP, E, Gandalf, Isabelle, Jape, KeY, Larch, LCF, Lean, Matita, Otter, PhoX, Prover9, SETHEO, Tau, Twelf, Uclid, Vampire, Waldmeister...

Tests

- the Thousands of Problems for Theorem Provers (TPTP) Problem Library: http://www.tptp.org/

Other ATP resources

Contests

CADE ATP System Competition (CASC)

- FOF (First-order form non-propositional theorems (axioms with a provable conjecture)): Vampire won 8 times
- CNF (Mixed clause normal form really non-propositional theorems (unsatisfiable clause sets)) : Vampire won 9 times
- SAT (Clause normal form really non-propositional non-theorems (satisfiable clause sets)): Gandalf won 5 times
- EPR (Effectively propositional clause normal form theorems and non-theorems (clause sets)): DCTP won 3 times
- UEQ (Unit equality clause normal form really non-propositional theorems (unsatisfiable clause sets)): Waldmeister won 12 times

Related problems

Proof verification

- or proof checking
- easier, decidable if every step can be checked by a primitive recursive function

Interactive provers

- a human user provides hints to the system
- somehow between proving and checking

Related problems

Model checking

- a process is considered theorem proving if it consists of a traditional proof obtained by axioms and inference rules
- from Model Checking vs. Theorem Proving: A Manifesto (Halpern-Vardi) We argue that rather than representing an agent's knowledge as a collection of formulas, and then doing theorem proving to see if a given formula follows from an agent's knowledge base, it may be more useful to represent this knowledge by a semantic model, and then do model checking to see if the given formula is true in that model. We discuss how to construct a model that represents an agent's knowledge in a number of different contexts, and then consider how to approach the model-checking problem.
- brute-force enumeration of many possible states
- yet, actual implementation are far from being brute-force

Related problems

Hybrid theorem proving

- model checking as an inference rule

Programs

- programs which prove a particular theorem, with a (usually informal) proof that termination with a certain result implies the theorem
- works on huge (non-surveyable) proofs
- four color theorem (1976, later ATP proof in 2005, still huge)
- the game four in a line: first player wins

Other uses

Industrial uses

- mostly concentrated in integrated circuit design and verification
- since the Pentium FDIV bug (1994), the complicated floating point units of modern microprocessors have been designed with extra scrutiny
- in the latest processors from AMD, Intel, and others, ATP has been used to verify that division and other operations are correct

