Capítulo 3: Propagación en Comunicaciones Móviles

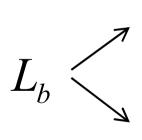
Propagación en Comunicaciones Móviles

- 1. Caracterización del fenómeno de propagación
- 2. Atenuación: modelos
- 3. Desvanecimiento por sombra
- 4. Desvanecimiento multitrayecto. Diversidad. Distorsión.

1. Caracterización del fenómeno de propagación

Caracterización

- Señal transmitida
- Señal recibida
- Relación entre ambas: propagación:
 - 1. Nivel (amplitud o potencia): atenuación
 - 2. Forma: distorsión



Atenuación

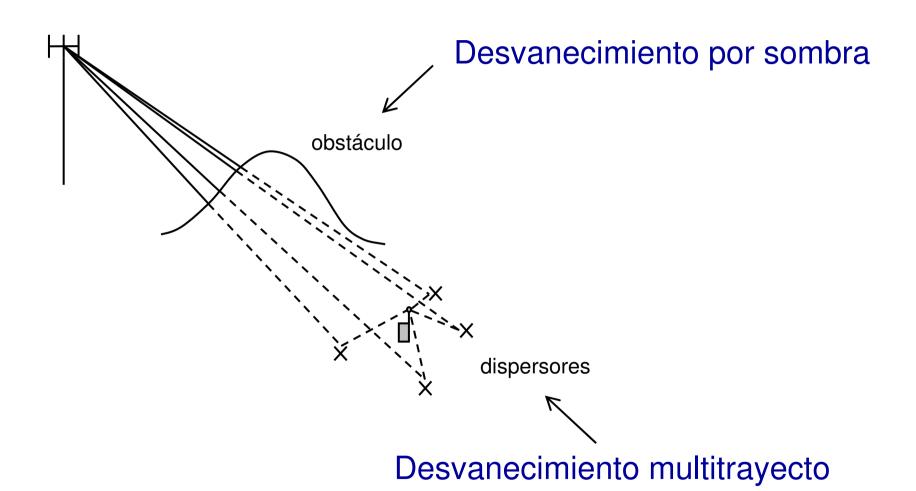
$$P_r = P_t + G_t + G_r - L_{tt} - L_{tr} - L_b \quad (dB)$$

$$P_r = PIRE + G_r - L_{tr} - L_b \quad (dB)$$

$$L_b = L_{bf} + L_{ex} \quad (dB)$$

Parte determinista ---> Modelos

desvanecimiento


Parte aleatoria: Caracterización estadística

Atenuación

- Modelos:
 - Analíticos
 - Semiempíricos
 - Empíricos
- Caracterización estadística:
 - Desvanecimiento por sombra
 - Desvanecimiento multitrayecto

Desvanecimiento

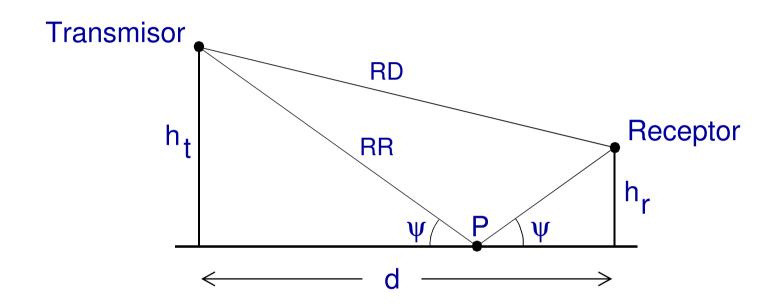
Desvanecimiento

- El desvanecimiento por sombra es lento: varía despacio con la posición del móvil (≈ varios m).
- El efecto de multitrayecto es rápido: varía deprisa
 (≈ fracción de λ: varios cm) con la posición del móvil.
- La atenuación por sombra de un obstáculo puede ser determinista o desvanecimiento (o parte de cada), según que el modelo tenga en cuenta o no el efecto de ese obstáculo.
- Las variaciones de atenuación por multitrayecto son siempre desvanecimiento, ya que no pueden calcularse de forma determinista, debido a su carácter rápido.

Distorsión

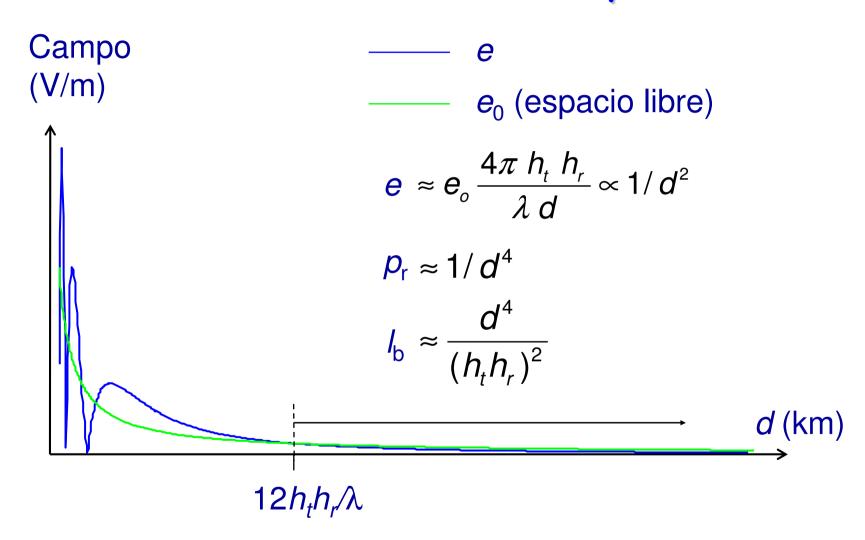
- La propagación multitrayecto, además de producir desvanecimiento, puede introducir distorsión lineal en la señal:
 - Dispersión temporal
 - Dispersión en frecuencia
- La importancia de estos efectos depende del tipo de canal de propagación y de las características de la señal.

2. Modelos de cálculo de la atenuación



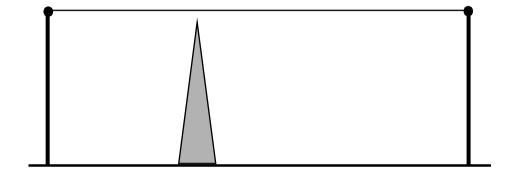
Modelos

- Analíticos
 - Tierra plana
 - Rec. P.526 del UIT-R
- Empíricos
 - Okumura-Hata
 - Ajustable tipo Hata
 - Modelos para interiores
- Semiempíricos
 - COST-231
 - Xia
 - Modelos para microcélulas



Modelo de Tierra plana

Modelo de Tierra plana



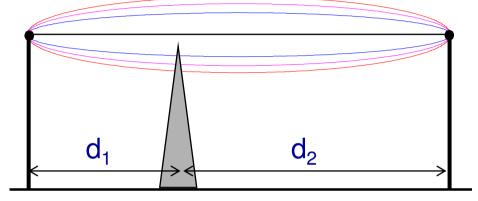
Ejemplo: $h_t = 10 \text{ m}$, $h_r = 1.5 \text{ m}$, $\lambda = 1/3 \text{ m}$ (f = 900 MHz): $12h_t h_r / \lambda = 0.5 \text{ km}$

Difracción

Transmisor Receptor

Obstáculo "próximo" al rayo:

Afecta a la propagación:


Modifica el nivel de señal en recepción: difracción.

¿Cómo se cuantifica esto?

Zonas de Fresnel

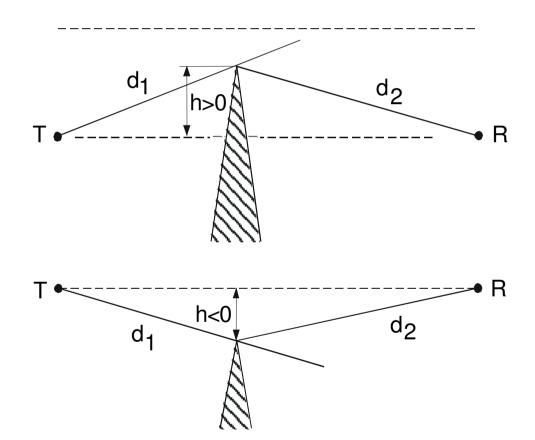
Transmisor Receptor

1ª zona

— 2ª zona

--- 3ª zona

. .


Zonas de Fresnel:
$$R_n = \sqrt{\frac{n\lambda d_1 d_2}{d}}$$

Determinan diferentes contribuciones al campo total

La más importante es la primera: $R_1(m) = 548 \sqrt{\frac{d_1(km)d_2(km)}{f(MHz)\cdot d(km)}}$

Rec. P.526 del UIT-R

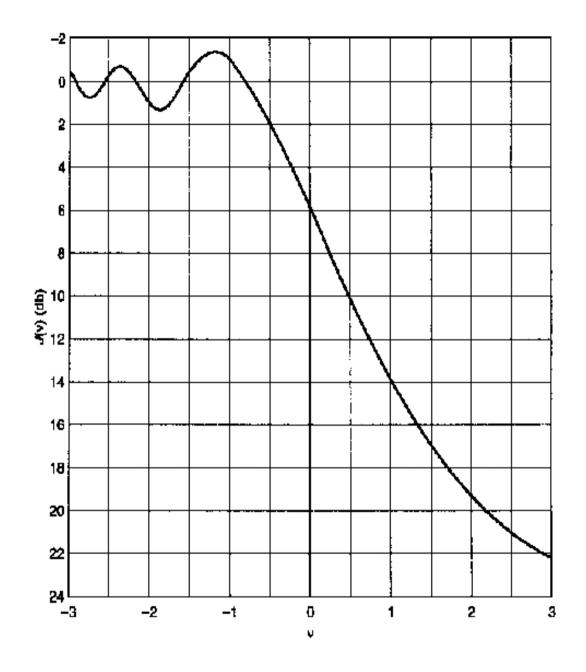
Difracción por obstáculo agudo aislado

Rec. P.526 del UIT-R

Difracción por obstáculo agudo aislado

Despejamiento normalizado

$$v = \sqrt{2} \frac{h}{R_1} = 2.58 \cdot 10^{-3} \sqrt{\frac{f \cdot d}{d_1 d_2}} \cdot h$$


Pérdida por difracción (atenuación en exceso): para v > -0.78:

$$L_D(v) = 6.9 + 20 \log \left(\sqrt{(v - 0.1)^2 + 1} + v - 0.1 \right)$$

Rec. P.526 del UIT-R

Difracción por obstáculo agudo aislado

Rec. P.526 del UIT-R

Generalizaciones respecto al caso de obstáculo agudo aislado:

- Difracción por obstáculo redondeado aislado Se aplica una corrección respecto al caso de obstáculo agudo.
- Difracción por varios obstáculos:
 - Se calculan las atenuaciones por separado y se aplica un término de corrección.

Pérdida básica de referencia (medio urbano)

$$L_{\rm b} = 69.55 + 26.16 \log f - 13.82 \log h_{\rm t}$$

- $a(h_{\rm m}) + (44.9-6.55 \log h_{\rm t}) \log d$

Variables, unidades y validez:

Frecuencia f (MHz): $150 \le f \le 1500$ MHz. Altura de la base h_t (m): $30 \le h_t \le 200$ m. Altura del móvil h_m (m): $1 \le h_m \le 10$ m. Distancia d (km): $1 \le d \le 20$ km.

Altura Efectiva de Antena

$$h_{\rm t} = h_0 + c_0 - h_{\rm media}$$

$$d_1 = d/4$$
 $d_2 = d$

$$d_2 = d$$

para
$$1 < d \le 8$$
 km.

$$d_1 = 3$$

$$d_1 = 3$$
 $d_2 = d$

para
$$8 < d \le 15 \text{ km}$$
.

$$d_1 = 3$$

$$d_1 = 3$$
 $d_2 = 15$

para
$$d > 15$$
 km.

Corrección por altura del móvil

$$a(h_{\rm m}) = 0$$
 para $h_{\rm m} = 1.5$ m

Ciudad media-pequeña

$$a(h_{\rm m}) = (1.1 \log f - 0.7) h_{\rm m} - (1.56 \log f - 0.8)$$

Ciudad grande

$$a(h_{\rm m}) = 8,29 \; (\log 1,54 \; h_{\rm m})^2 - 1,1 \qquad f \le 200 \; {\rm MHz}$$

 $a(h_{\rm m}) = 3,2 \; (\log 11,75 \; h_{\rm m})^2 - 4,97 \qquad f \ge 400 \; {\rm MHz}$

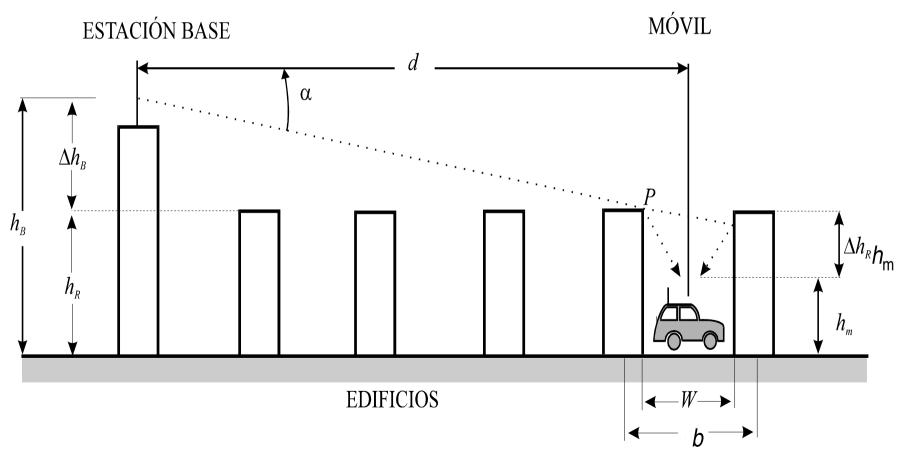
Corrección por zona de recepción

Zona Suburbana

$$L_{b_s} = L_b - 2 \cdot [\log (f/28)]^2 - 5.4$$

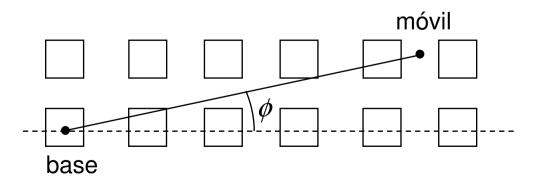
Zona Rural

$$L_{b_r} = L_b - 4,78(\log f)^2 + 18,33\log f - 40,94$$


Extensión a 1500 $\leq f \leq$ 2000 MHz (Hata-COST 231)

$$L_{b} = 46.3 + 33.9 \log f - 13.82 \log h_{t} - a (h_{m}) + (44.9 - 6.55 \log h_{t}) \log d + c_{m}$$

$$c_m = \begin{cases} 0 \text{ dB para ciudad tipo medio} \\ 3 \text{ dB para grandes centros metropolitanos} \end{cases}$$



- Basado en modelos teóricos y medidas en ciudades europeas.
- Aplicable a macrocélulas urbanas (Δh_B>0)
- Aplicable con menor aproximación a microcélulas (Δh_B<0).

 Altura de antena de base $4 \le h_B \le 50 \text{ m}.$ h_{B} : Altura del móvil h_m : $1 \le h_m \le 3 \text{ m}.$ $0.002 \le d \le 5$ km. Distancia d: $800 \le f \le 2000 \text{ MHz}$ Frecuencia Separación entre edificios b: $20 \le b \le 50 \text{ m}$. Anchura de calles W Altura edificios h_R Ángulo rayo-calle (en planta) $0^{\circ} \leq \phi \leq 90^{\circ}$

1. Trayectos con línea de vista (LOS)

$$L_b = 42.6 + 26 \log d(\text{km}) + 20 \log f(\text{MHz})$$

2. Trayectos sin línea de vista (NLOS)

$$L_b = L_0 + L_{rts} + L_{msd}$$

• L₀: Pérdida en condiciones de espacio libre

$$L_0 = 32,45 + 20\log f(MHz) + 20\log d(km)$$

L_{rts}: Pérdida difracción tejado-calle

L_{ori}: Pérdida por orientación de la calle

$$\Delta h_R = h_R - h_m$$

$$L_{rts} = -16,9 - 10\log w + 10\log f(MHz) + 20\log \Delta h_R + L_{ori}$$

$$L_{ori} = \begin{cases} -10 + 0.3571 \phi(^{\circ}) & \phi \le 35^{\circ} \\ 2.5 + 0.075 (\phi(^{\circ}) - 35) & 35 \le \phi < 55^{\circ} \\ 4 - 0.114 (\phi(^{\circ}) - 55) & 55 \le \phi < 90^{\circ} \end{cases}$$

• L_{msd} : Pérdidas por difracción multipantalla L_{bsh} : ganancia por altura de la base

$$L_{msd} = L_{bsh} + k_a + k_d \log d(\text{km}) + k_f \cdot \log f(\text{MHz}) - 9 \log b$$

$$\Delta h_B = h_B - h_B$$

$$L_{bsh} = -18 \log(1 + \Delta h_B)$$

$$\Delta h_B \ge 0$$

$$k_{a} = \begin{cases} 54 & \Delta h_{B} \ge 0 \\ 54 - 0.8 \mid \Delta h_{B} \mid & \Delta h_{B} < 0 \quad d \ge 0.5 \\ 54 - 1.6 \mid \Delta h_{B} \mid \cdot d(\text{km}) & \Delta h_{B} < 0 \quad d < 0.5 \end{cases}$$

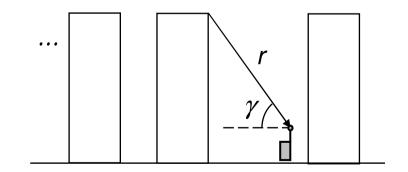
$$k_f = \begin{cases} -4 + 0.7 \cdot \left(\frac{f}{925} - 1\right) \\ -4 + 1.5 \cdot \left(\frac{f}{925} - 1\right) \end{cases}$$

 $k_f = \begin{cases} -4 + 0.7 \cdot \left(\frac{f}{925} - 1\right) & \text{Zonas Suburbanas y} \\ -4 + 1.5 \cdot \left(\frac{f}{925} - 1\right) & \text{Ciudades de tamañ omedio} \end{cases}$ Ciudades centros metropolitanos

$$k_{d} = \begin{cases} 18 & \Delta h_{B} \ge 0\\ 18 - 15 |\Delta h_{B}| / h_{R} & \Delta h_{B} < 0 \end{cases}$$

Si $L_0 + L_{rts} + L_{msd} < L_0$, se toma $L_b = L_0$.

Modelo de Xia


- Similar a COST-231
- Se obtiene L_b como suma de tres términos: $L_b = L_0 + L_{rts} + L_{msd}$
- Se distinguen tres situaciones:

1.
$$h_{\rm B} >> h_{\rm R}$$

2.
$$h_{\rm B} \approx h_{\rm R}$$

3.
$$h_{\rm B} < h_{\rm R}$$

Altura de antena de base	$h_B(m)$
Distancia	d(km)
Frecuencia	f (MHz)
Separación entre edificios	<i>b</i> (m)
Anchura de calles	w (m)
Altura de edificios	$h_{R}\left(m\right)$
Distancia último edificio-móvil	<i>r</i> (m)
Ángulo último edificio-móvil	γ (rad)

Modelo de Xia

1.
$$h_{\rm B} >> h_{\rm R}$$

$$L_b = 73,54 + 21\log f - 18\log \Delta h_B - 9\log b + 10\log r + 20\log(\gamma(2\pi + \gamma)) + 38\log d$$

$$\Delta h_B = h_B - h_B$$

2.
$$h_{\rm B} \approx h_{\rm R}$$

$$L_b = 61,67 + 30\log f - 20\log b + 10\log r + 20\log(\gamma(2\pi + \gamma)) + 40\log d$$

3.
$$h_{\rm B} < h_{\rm B}$$

$$L_{b} = 36.9 + 40 \log f - 20 \log b + 10 \log r + 10 \log r' + 10 \log (\beta(2\pi + \beta)) + 20 \log(\gamma(2\pi + \gamma)) + 40 \log d$$

$$\Delta' h_{B} = h_{B} - h_{B} \text{ (m)}$$

$$r' = \sqrt{w^{2} + (\Delta' h_{B})^{2}} \text{ (m)}$$

$$\beta = \arctan \frac{\Delta' h_{B}}{w} \text{ (rad)}$$

Teoría Geométrica de la Difracción (GTD)

- Método analítico.
- Combina ideas de óptima geométrica (reflexión, refracción) con efectos de difracción.
- Constituye una aproximación a las ecuaciones de Maxwell.
- Se basa en trazado de rayos.
- Considera rayos directo, reflejado y difractados, con múltiples combinaciones de reflexión y difracción (en la práctica se suelen limitar a 2 ó 3)
- Requiere mapas muy precisos, lo cual limita su aplicación.

Modelos para microcélulas

- Alturas de antenas de estación base reducidas
- Pequeña cobertura
- Influye la topografía urbana
- Dos tipos de escenarios de propagación:
 - Con visión directa: LOS
 - Sin visión directa: NLOS

Modelos para microcélulas: LOS

Hay un punto de transición (turning point) a la distancia

$$d_{tp} \approx \frac{4h_t h_m}{\lambda}$$

Atenuación de propagación:

$$L_1(d) = L_0 + 10 \ n_1 \log d$$
 $(d \le d_{tp})$
 $L_2(d) = L_0 + 10 \ (n_1 - n_2) \log d_{tp} + 10 \ n_2 \log d$ $(d > d_{tp})$

Modelo de la Universidad de Lund:

$$l(d) = k[1_1^4(d) + 1_2^4(d)]^{\frac{1}{4}}$$

$$k = (4\pi/\lambda)^2$$

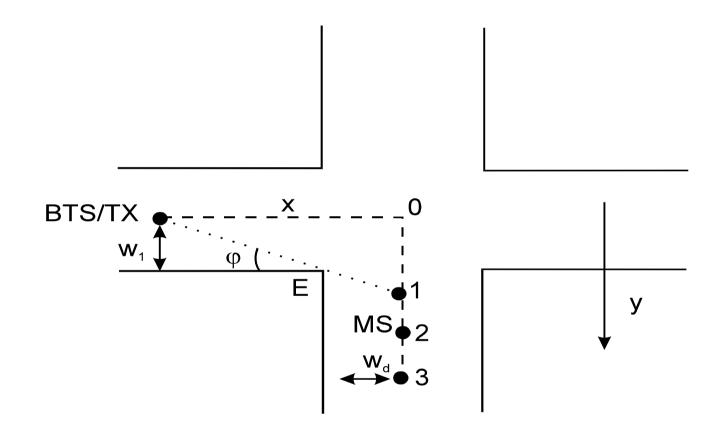
$$l_1(d) = d^{n_1}$$

$$l_2(d) = d_{tp}^{-n_2 + n_1} \cdot d^{n_2}$$

Modelos para microcélulas: LOS

Valores típicos para f = 1800 MHz.

$$10\log k=33 \text{ dB}$$


$$n_1 = 2,13$$

$$n_2 = 4,35$$

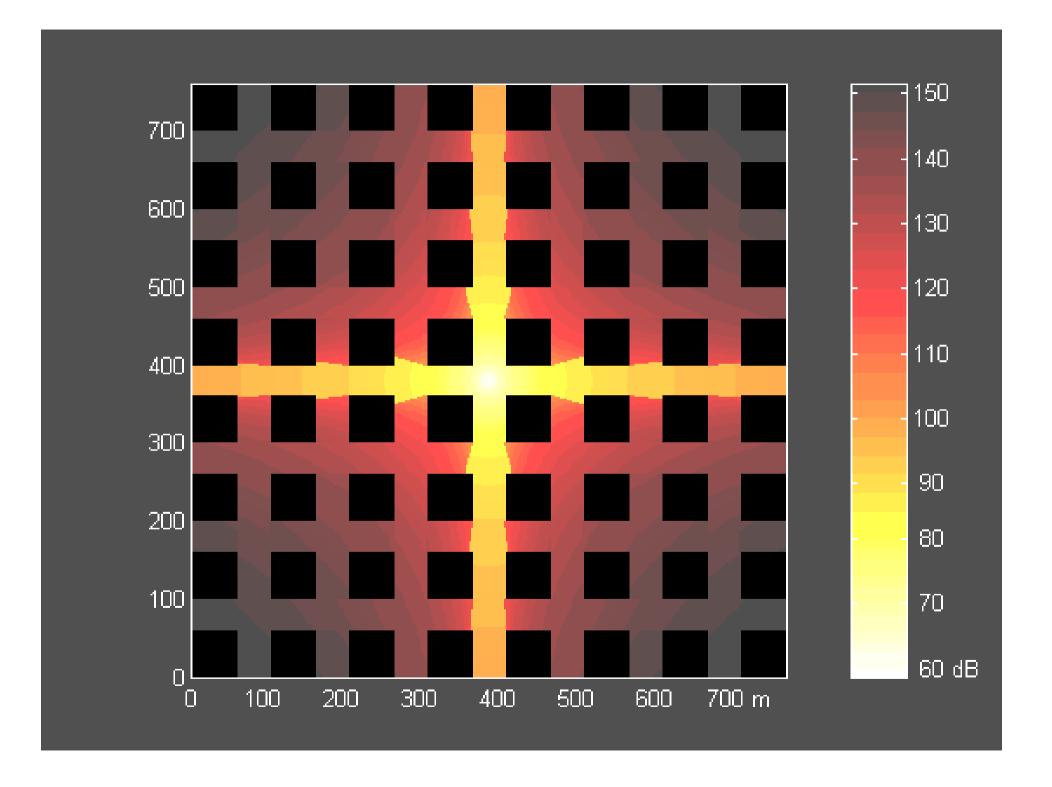
$$d_{tp} = 254 \text{ m}$$

Modelos para microcélulas: NLOS

Modelos para microcélulas: NLOS

Atenuación de propagación

$$L_b = L(x) + L(y)$$


L(x) se calcula con el modelo LOS.

$$L(y) = [u(y_1) - u(y_2)]f(y_2) \frac{\log y - \log y_1}{\log y_2 - \log y_1} + u(y_2)f(y)$$

$$f(y) = 10\log\left(\frac{y}{y_0}\right)^n$$

$$y_0 = 8,92 \varphi (rad) + 1,7$$

 $y_1 = 10,7 \varphi (rad) + 0,22 w_d (m) + 2,99$
 $y_2 = 0,62 w_d (m) + 4,9$
 $n = 2,75 - 1,13 \exp(-23,4 \cdot \varphi (rad))$

Modelo tipo Hata con coeficientes ajustables

Se basa en ajustar coeficientes a partir de medidas:

$$L_b = K_{1,i} + K_2 \cdot \log d + K_3 \cdot \log h_{eff} + K_4 \cdot L_{\text{Difracción}} + K_5 \cdot \log h_{eff} \cdot \log d + K_6 \cdot h_m$$

Es un modelo similar al de Hata, salvo que

- Los coeficientes pueden tomar otros valores.
- El término constante $K_{1,i}$ es distinto para cada tipo de terreno o *clutter*, *i*.
- Se puede incluir un término de difracción, para tener en cuenta de forma más detallada el perfil.
- El ajuste se suele hacer para una banda de frecuencias fija, por lo que no hay término dependiente de la frecuencia.

Se ajustan más o menos coeficientes en función de las medidas disponibles. Por ejemplo:

- Ajustar todos
- Ajustar sólo $K_{1,i}$, y fijar el resto según el modelo de Hata.

El ajuste se hace minimizando el error cuadrático medio.

Modelos para interiores

Modelo basado en suelos y paredes atravesados

$$L=L_o + 10 \cdot n \cdot \log d + \sum_{k=1}^{J} k_{fi} L_{fi} + \sum_{j=1}^{J} k_{wj} L_{wj}$$

d: Distancia

 L_o : Pérdidas para d = 1 m.

 L_{ii} : Factor de pérdidas para suelo tipo i

 k_{fi} : Número de suelos tipo *i* atravesados

 L_{wi} : Factor de pérdidas para pared tipo j

 k_{wi} : Número de paredes tipo j atravesadas

n: Exponente de la variación con la distancia

I: Número de suelos

J: Número de paredes

Modelos para interiores

Modelo basado en línea de regresión

$$L(dB) = L_o + 10 n \log d$$

 L_o y n dependen del tipo de entorno y de la frecuencia

Trayecto	<i>L_o</i> (dB)	n Origen del Modelo		
LOS	35,8	1,7	UIT-Finlandia	
NLOS	16,0	5,5		
LOS	22,5	2,9	UNIV. LUND	
NLOS	8,0	4,1		
LOS	21,2	1,5	UNIV.	
NLOS	23,6	3,2	BRISTOL	

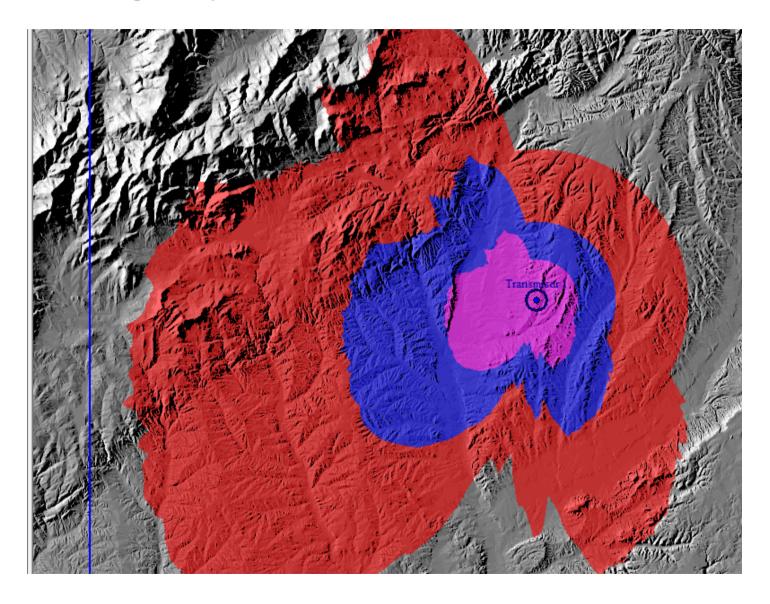
Pérdidas por penetración

La cobertura en interiores desde estaciones base situadas en exteriores se suele evaluar calculando la atenuación como suma (dB) de dos términos:

- Pérdida de propagación entre la base y la pared exterior del edificio (usando un modelo para exteriores).
- Pérdida por penetración en interiores, en torno a 15–20 dB.

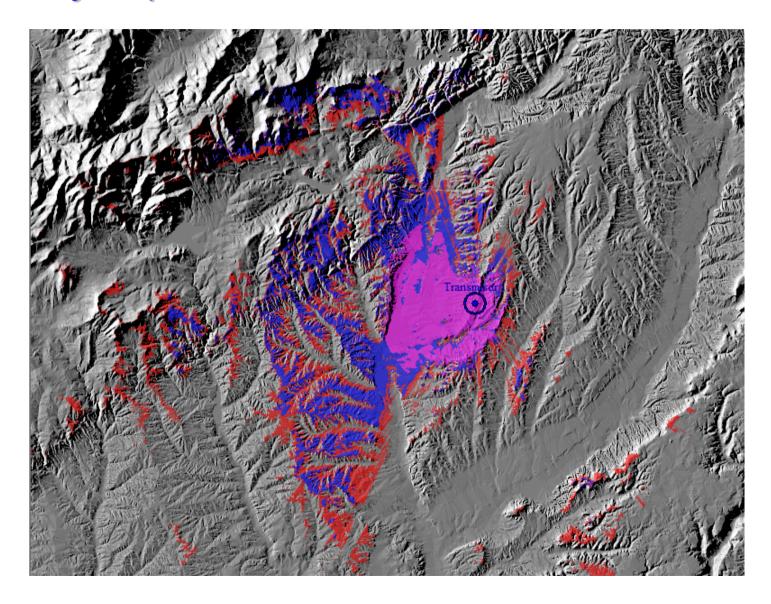
Herramientas de planificación

Mapas:

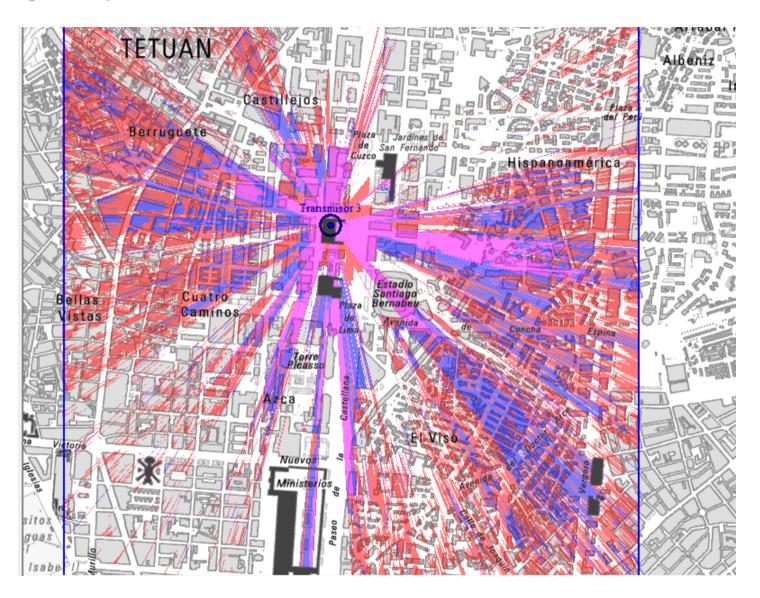

- Altimetría.
- Visualización: calles, carreteras, etc.
- Morfografía: uso del terreno (clutter).
- Administrativo: provincias, municipios.
- Demografía
- Sistema de gestión geográfica:
 - Elementos de la red: emplazamientos, estaciones base, ...
 - Resultados: mapas de cobertura, de interferencia, ...

• Algoritmos:

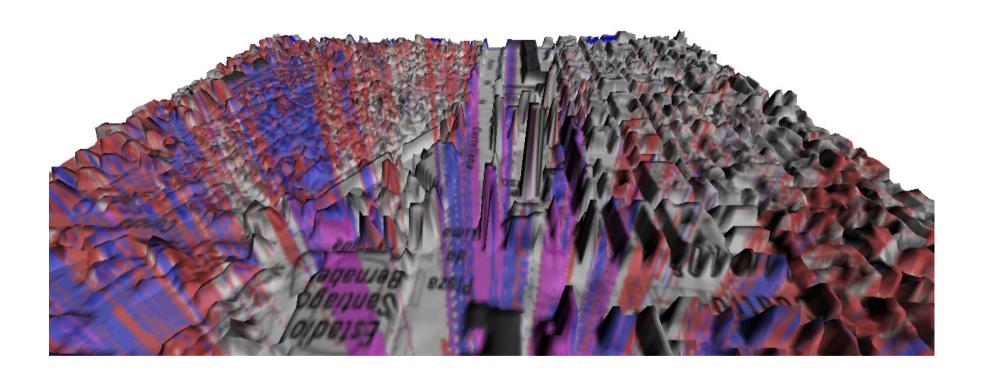
- Cálculos de atenuación
- Cálculos de tráfico
- Asignación de frecuencias
- Simulación (capacidad).



Ejemplo: Hata, rural, 100 m



Ejemplo: Rec. P.526, rural, 100 m


Ejemplo: Xia, urbano, 4 m (edificios)

Ejemplo: Xia, urbano, 4 m (edificios)

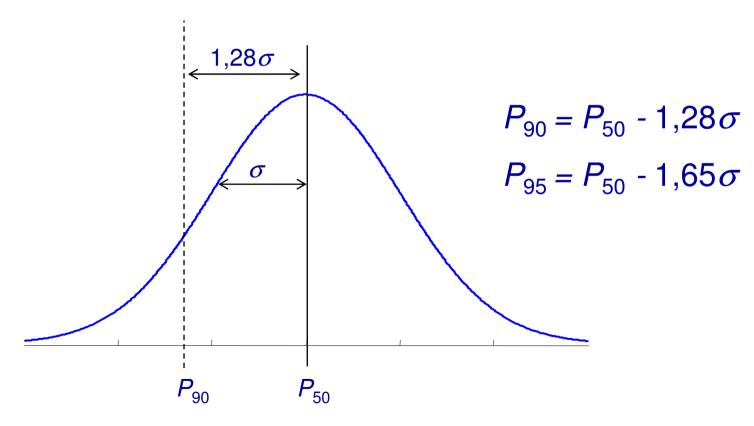
Vista en 3D desde la estación base hacia el sur

Comparación de modelos

Modelo	Tipo	Entorno	Mapa	Usado
Tierra plana	Analítico	Rural	_	*
UIT-R P.526	Analítico	Rural	100 m	* *
Hata	Empírico	Urbano	20 m	* *
		Rural	200 m	* *
Ajustable tipo Hata	Empírico	Urbano	20 m	* * *
		Rural	200 m	* * *
COST 231, Xia	Semiempírico	Urbano	2 m, edificios	* *
GTD	Analítico	Urbano	1m, edificios	*
Microcélulas	Semiempírico	Urbano	4 m, edificios	* *
Interiores simple	Empírico	Interiores	_	* *
Interiores detallado	Empírico	Interiores	1m, 3D, materiales	*

3. Desvanecimiento por sombra

- Término aleatorio en la atenuación de propagación.
- Está causado por aspectos no tenidos en cuenta por el modelo de propagación (sombra de obstáculos).
- Teórica y experimentalmente se deduce que tiene una distribución gaussiana en dB (log-normal en unidades naturales), con media (mediana) nula.


$$L_{b\text{real}} = L_{b\text{modelo}} + D$$
 (dB)

$$f(D) = \frac{1}{\sigma_L \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{D}{\sigma_L}\right)^2\right]$$

 La forma de la distribución es la misma para potencia, campo o tensión expresados en dB (dBm, dBu, dBμ).

- P_{real} es la potencia real de la señal (variable aleatoria)
- P_x se define como: $Pr(P_{real} > P_x) = x\%$
- El valor predicho por el modelo es P_{50}

- La potencia real será inferior a la predicha por el modelo con probabilidad 50%.
- Por tanto, en el borde (perímetro) de la célula, sólo habrá cobertura en el 50% de las ubicaciones. Esta probabilidad es mayor en el interior de la célula, según se reduce la distancia a la base.
- Ejemplo:

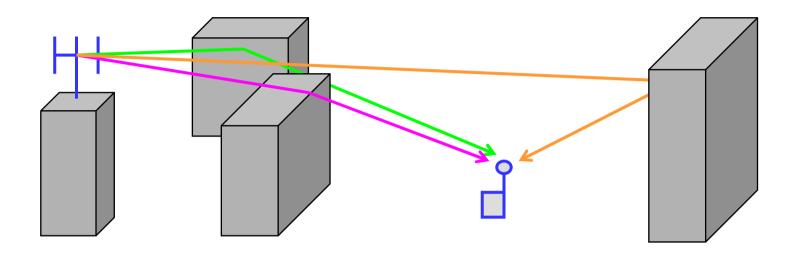
$$P_t$$
 = 33 dBm, S = -102 dBm, G_t = 0 dB, G_r = 17 dB, L_{tr} = 2 dB: $S = P_t + G_t + G_r - L_b - L_{tr}$ $L_b = P_t + G_t + G_r - L_{tr} - S = 150$ dB.

En el borde de la zona delimitada por la condición $L_b \le 150$ dB, la probabilidad de cobertura será el 50%.

- Para aumentar el porcentaje de cobertura es necesario añadir un margen de seguridad, M, llamado "margen de desvanecimiento por sombra" o "margen log-normal".
- Usualmente se especifica un objetivo del 90% en el borde (porcentaje perimetral): margen de $1,28\sigma$.
- El porcentaje de cobertura global (porcentaje zonal) es mayor que en el borde.
- El valor de la desviación típica σ depende del entorno y del modelo de cálculo utilizado para la pérdida de propagación.
- Los valores usuales para σ están entre 6 y 12 dB. Es habitual considerar σ = 8 dB. El margen para el 90% es entonces 10,3 dB.
- En el ejemplo, para un porcentaje del 90% en el borde de la zona de cobertura,

$$L_{b} = P_{t} + G_{t} + G_{r} - L_{tr} - S - M = 140 \text{ dB}.$$

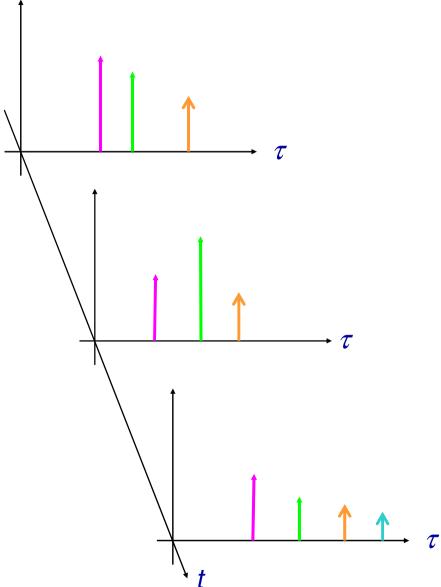
4. Desvanecimiento multitrayecto. Diversidad. Distorsión



Multitrayecto

- · La señal se propaga por múltiples caminos.
- Ventaja: se amplía la cobertura.
- Inconvenientes:
 - Interferencia destructiva: desvanecimiento
 - Selectividad en frecuencia: posible distorsión (lineal)
 - Selectividad en tiempo: posible distorsión (lineal)

Multitrayecto


Parámetros de las componentes:

- Amplitud
- Retardo
- Desplazamiento Doppler
- Desfase

Caracterización del canal

Sistema lineal variante:

 $h(t,\tau)$

Respuesta del canal en el instante t a un impulso transmitido τ segundos antes

Caracterización del canal

Señal recibida r(t) en función de señal transmitida s(t):

$$r(t) = \int_{-\infty}^{\infty} s(t-\tau)h(t,\tau)d\tau$$

Respuesta al impulso variante en el tiempo: $h(t, \tau)$.

Función de transferencia variante en el tiempo: $T(t,t) = \mathcal{F}_{\tau}[h(t,\tau)]$

Función desplazamiento Doppler - retardo: $S(v, \tau) = \mathcal{F}_t[h(t, \tau)]$

Función de transferencia - desplazamiento Doppler: $H(v,t) = \mathcal{F}_t [\mathcal{F}_{\tau}[h(t,\tau)]]$

Caracterización del canal

Efectos del canal multitrayecto:

- Variación aleatoria de $h(t, \tau) \Rightarrow$ desvanecimiento.
 - El desvanecimiento es sensible a la frecuencia: afecta de manera distinta a señales transmitidas en frecuencias diferentes.
 - Es también variante en el tiempo: afecta de manera distinta a señales transmitidas en instantes diferentes.
- Las mencionadas dependencias en tiempo y en frecuencia pueden introducir distorsión (lineal) en la señal:
 - 1. si la respuesta del canal varía dentro del ancho de banda de la señal; o
 - 2. si la respuesta del canal varía a lo largo de la duración de la señal:

En general, si $h(t,\tau) \neq \alpha \cdot \delta(\tau)$ puede haber distorsión:

- 1. τ : dispersión temporal \leftrightarrow f: selectividad (variación) en frecuencia
- 2. t: variación temporal $\leftrightarrow \nu$: dispersión en frecuencia (Doppler)

- En función de las diferencias de distancia y cambios de fase, las réplicas recibidas interfieren de forma constructiva o destructiva.
- Variación aleatoria del nivel recibido, con la siguiente distribución:
 - -Cuando se transmite una sinusoide, o una señal de banda "estrecha":
 - Si no hay línea de vista (NLOS): distribución Rayleigh para magnitudes lineales (tensión, campo); exponencial para magnitudes cuadráticas (potencia). Pueden producirse desvanecimientos de hasta 30-40 dB.
 - Si hay línea de vista (LOS): distribución Rice para magnitudes lineales.
 Los desvanecimientos son menos profundos.
 - –Cuando se transmite una señal de banda "ancha":

Las componentes en frecuencia de la señal sufren atenuaciones diferentes: "diversificación" en frecuencia: la distribución es más suave, con desvanecimientos menos profundos (pero la señal se distorsiona).

- Las variaciones son **rápidas** (basta desplazamiento del orden de λ).
- Al ser rápidas, estas variaciones afectan (y se tratan) de forma distinta que el desvanecimiento por sombra.

• Distribuciones Rayleigh (tensión: *v*) y exponencial (potencia: *p*)

$$f(v) = \frac{v}{b} \exp\left[-\frac{v^2}{2b}\right]$$
 $f(p) = \frac{1}{b} \exp\left[-\frac{p}{b}\right]$

Rayleigh

Exponencial

$$b = E[v^2]/2 = E[p]$$
: potencia media

• Distribución Rice (tensión: v):

$$f(v) = \frac{v}{b} \exp \left[-\frac{v^2 + c^2}{2b} \right] I_0 \left(\frac{cv}{b} \right)$$

Rice

b = potencia media de la componente aleatoria

 c^2 = potencia de la componente determinista

 $I_0(\cdot)$: función de Bessel modificada de primera especie y de orden 0

- Hay que distinguir entre:
 - E_B/N₀ instantánea
 - E_B/N₀ media, respecto a variaciones (rápidas) producidas por el canal multitrayecto.
- En planificación radio se trabaja habitualmente con magnitudes promediadas respecto a las variaciones por multitrayecto.
- Al hablar de "nivel recibido" (o " $E_{\rm B}/N_0$ "), usualmente **nos** referimos a la media respecto a variaciones por multitrayecto.
- La calidad viene dada por una tasa de error (BER, BLER, ...).

 Por su propia naturaleza, es una media respecto a multitrayecto:

$$G = E[g] = \int_0^\infty g(\gamma) f(\gamma) d\gamma$$

 γ : $E_{\rm B}/N_0$ instantánea, con fdp f

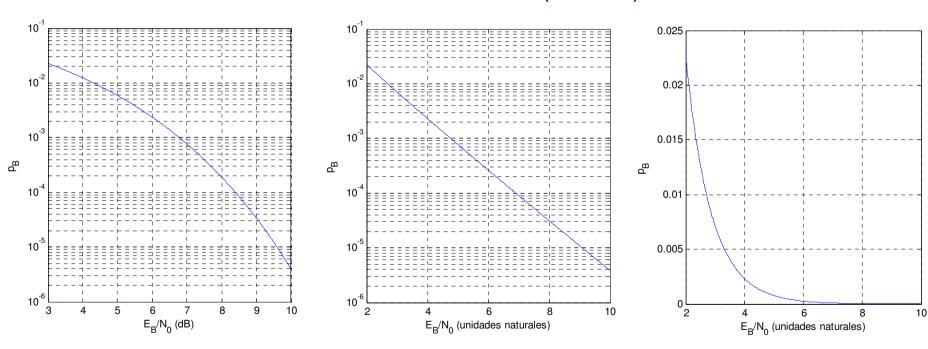
g: tasa de error en función de γ

G: tasa de error media

 El nivel recibido (medio) necesario para lograr una cierta calidad se denomina sensibilidad.

• Variabilidad en la E_B/N_0 instantánea \Rightarrow peor calidad (para una misma E_B/N_0 media).

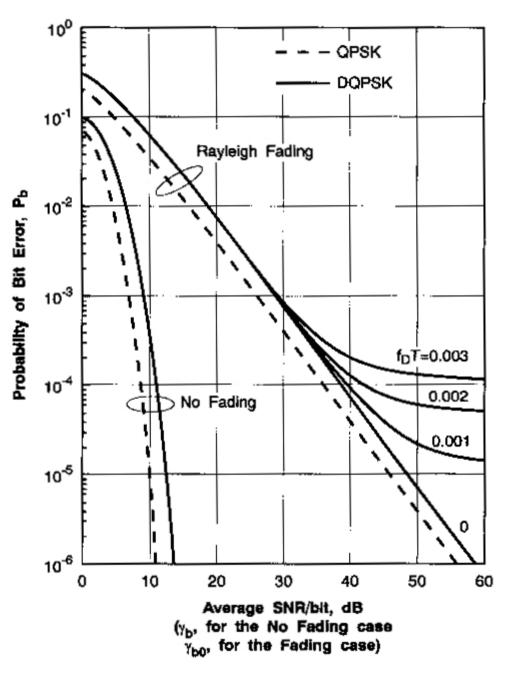
Es decir, cuanto más ancha sea f, mayor tasa de error media G.


El motivo es que la función *g* es cóncava.

- Para compensar la degradación es necesario **incrementar** la sensibilidad, o la $E_{\rm B}/N_0$ (media) requerida. Se define así la sensibilidad (o $E_{\rm B}/N_0$) **dinámica**; por contraposición a la **estática**, que es la correspondiente a un canal sin desvanecimiento.
- En la planificación se utiliza la sensibilidad (o la E_B/N_0) dinámica. Así, el valor considerado **incluye el efecto del multitrayecto**.
- En función del tipo de canal la sensibilidad (o la E_B/N_0) dinámica será distinta: mayor cuanto más varíe el canal.

Ejemplo de degradación: BER, BPSK, sin codificar, receptor ideal

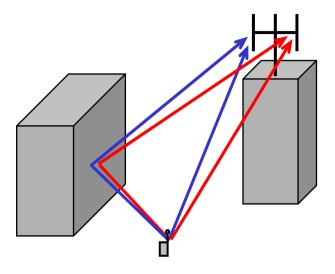
BER en canal estático (AWGN)



Ejemplo de degradación

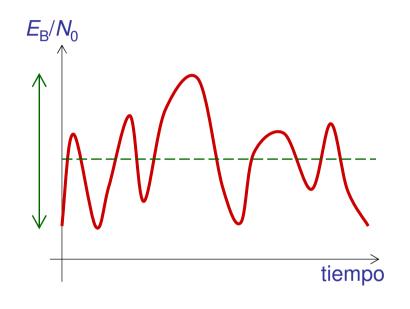
BER (media) en canal Rayleigh en función de la $E_{\rm B}/N_0$ (media), comparada con canal sin desvanecimiento

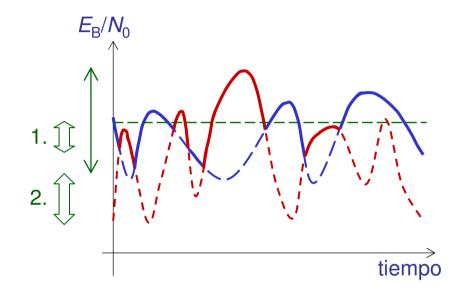
La degradación en este caso es la distancia horizontal entre las curvas correspondientes a canales con y sin desvanecimiento.



- La degradación producida por el desvanecimiento puede contrarrestarse por medio de:
 - codificación de canal con entrelazado
 - control de potencia rápido / adaptación al enlace rápida
 - diversidad de recepción (de antena, de polarización)
 - diversificación multitrayecto, con SS.

Diversidad de recepción


- Se recibe la señal en varias antenas suficientemente "separadas", de forma que los desvanecimientos sean estadísticamente independientes.
- Tipos: selección / combinación
- Formas: espacio / polarización
- Ganancia por diversidad: reducción de la E_B/N_0 media necesaria (referida a una antena) al usar diversidad. Se debe a dos efectos:
 - 1. Sube la media
 - 2. Se reduce la variación



Diversidad de recepción: selección

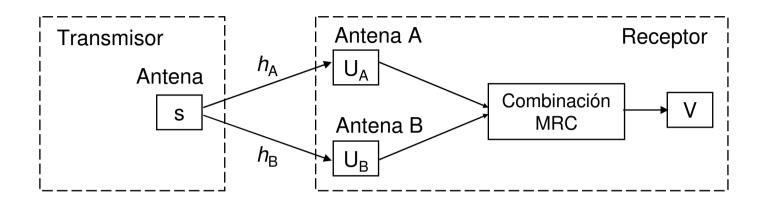
Sin diversidad

Desvanecimientos independientes

- 1. Sube la media
- 2. Se reduce la variación

Menor $E_{\rm B}/N_0$ media requerida

Diversidad de recepción: combinación


- En vez de seleccionar la señal más potente entre las N disponibles, se combinan todas esas señales.
- Cada señal r_i , i = 1, ..., N se recibe por medio de un receptor convencional (filtro adaptado): variable de decisión U_i .
- La combinación se aplica sobre las variables de decisión individuales U₁, ..., U_N. El método óptimo (Maximum Ratio Combining, MRC) se basa en:
 - 1. Poner en fase las señales (para evitar suma destructiva)
 - 2. Dar a cada señal un peso proporcional a su amplitud (las señales débiles son menos "fiables")

Llamando $h_1, ..., h_N$ a las amplitudes complejas de recepción, la combinación se expresa como $U = h_1^* U_1 + \cdots + h_N^* U_N$.

- El principio de funcionamiento es análogo al del filtro adaptado.
- El proceso de combinación exige estimar $h_1, ..., h_N$. Se utilizan para ello símbolos piloto.
- La SINR (o E_B/N_0) instantánea de la señal combinada resulta ser la suma de las individuales: SINR = SINR₁ + ··· + SINR_N.

Combinación MRC

s: símbolo transmitido en el intervalo de símbolo considerado

 h_A , h_B : atenuación y fase de los canales de propagación A y B

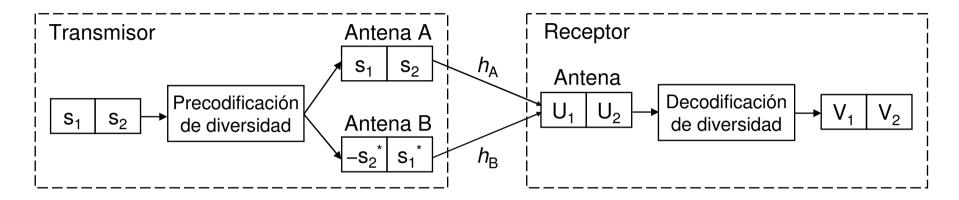
 U_A , U_B : variables de decisión en los receptores A y B

V: variable de decisión combinada

k: incluye el efecto del modulador (símbolo \rightarrow forma de onda transmitida) y del demodulador (forma de onda transmitida \rightarrow variable de decisión)

$$U_{A} = k h_{A} s$$

 $U_{B} = k h_{B} s$
 $V = h_{A}^{*} U_{A} + h_{B}^{*} U_{B} = k h_{A}^{*} h_{A} s + k h_{B}^{*} h_{B} s = k (|h_{A}|^{2} + |h_{B}|^{2}) s$



Diversidad de transmisión

- Se emplea sobre todo en sentido descendente, usando las dos o más antenas que suele tener la base para diversidad de recepción en sentido ascendente.
- Ventajas similares a las de diversidad de recepción.
- Métodos:
 - 1. Con realimentación (o "en bucle cerrado"):
 - Similar a MRC en recepción, sólo que los pesos de la combinación lineal se aplican en transmisión: precodificación espacial. (Los pesos ideales siguen siendo h_A*, h_B*).
 - Ello requiere realimentación por parte del receptor de los pesos estimados.
 - A veces se ajustan sólo las fases: menos ganancia.
 - 2. Sin realimentación (método de Alamouti):
 - Consigue el mismo efecto que MRC en recepción aplicando una precodificación fija en el transmisor.
 - No necesita realimentación, al ser la precodificación fija.
 - Requiere que el canal no varíe entre dos símbolos consecutivos.

Diversidad de transmisión sin realimentación (método de Alamouti)

 s_1 , s_2 : símbolos transmitidos en dos intervalos consecutivos

 h_A , h_B : atenuación y fase de los canales de propagación A y B

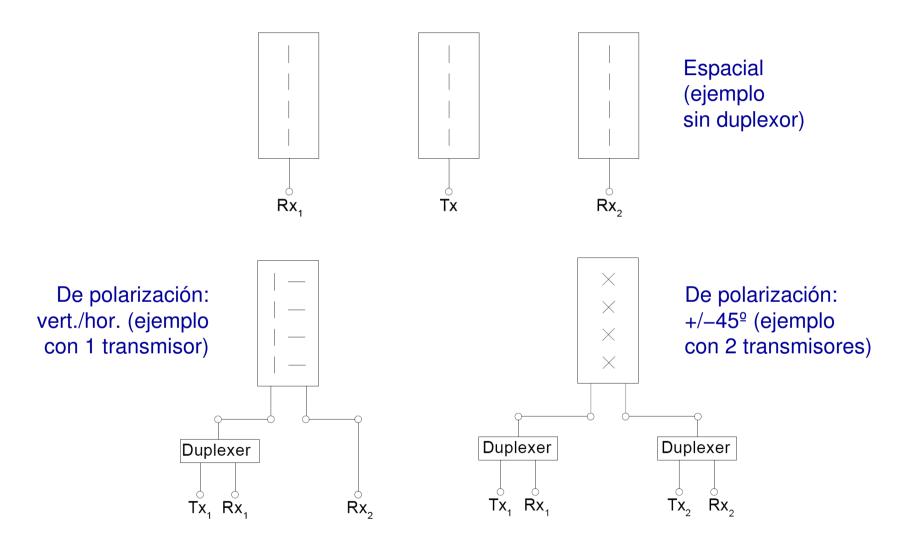
 U_1 , U_2 : variables de decisión originales

 V_1 , V_2 : variables de decisión tras decodificación de diversidad

k: incluye el efecto del modulador (símbolo \rightarrow forma de onda transmitida) y del demodulador (forma de onda transmitida \rightarrow variable de decisión)

$$U_{1} = kh_{A}s_{1} - kh_{B}s_{2}^{*} \quad V_{1} = h_{A}^{*}U_{1} + h_{B}U_{2}^{*} = k(h_{A}^{*}h_{A}s_{1} - h_{A}^{*}h_{B}s_{2}^{*} + h_{A}^{*}h_{B}s_{2}^{*} + h_{B}^{*}h_{B}s_{1}) = k(|h_{A}|^{2} + |h_{B}|^{2})s_{1}$$

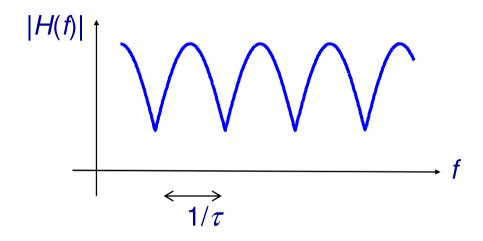
$$U_{2} = kh_{A}s_{2} + kh_{B}s_{1}^{*} \quad V_{2} = -h_{B}U_{1}^{*} + h_{A}^{*}U_{2} = k(-h_{A}^{*}h_{B}s_{1}^{*} + h_{B}^{*}h_{B}s_{2} + h_{A}^{*}h_{A}s_{2} - h_{A}^{*}h_{B}s_{1}^{*}) = k(|h_{A}|^{2} + |h_{B}|^{2})s_{2}$$


72

Separación mínima para diversidad

- La ganancia por diversidad se basa en que los desvanecimientos en los diferentes canales sean estadísticamente independientes.
- Ello requiere que los canales estén físicamente separados:
 - Espacialmente: se requiere una separación horizontal mínima entre antenas del orden de:
 - En el móvil: $\sim \lambda/2$
 - En una base macrocelular (antenas en emplazamientos elevados): $\sim 10\lambda$
 - En una base microcelular (antenas por debajo del nivel de los tejados o azoteas): caso comprendido entre los anteriores.
 - Por polarización: válido para 2 antenas. Se emplean polarizaciones ortogonales: horizontal/vertical (poco usado) o +/-45º (más usual).

Antenas para diversidad

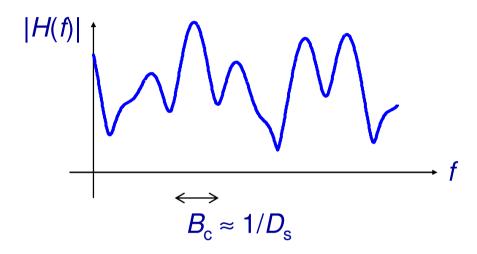


Dispersión temporal: dos rayos

Respuesta al impulso

 $|h(t)| \xrightarrow{t}$

Función de transferencia


- Respuesta en frecuencia periódica
- Separación entre mínimos: $1/\tau$
- Profundidad de desvanecimiento: según relación de amplitudes

Dispersión temporal: varios rayos

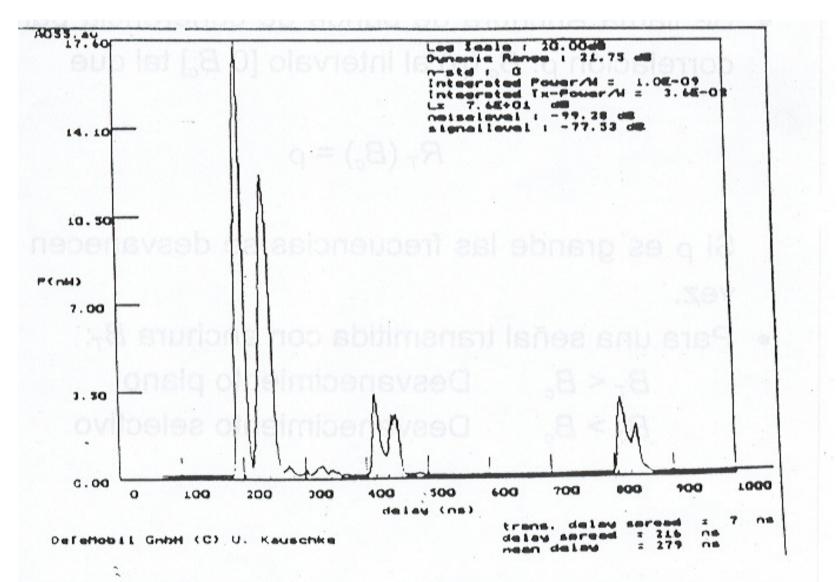
Respuesta al impulso

 $|h(t)| \xrightarrow{t} t$

Función de transferencia

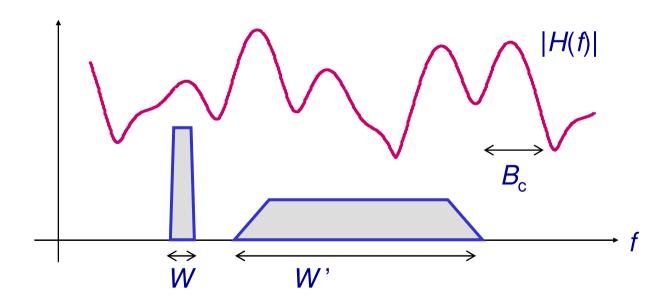
- Se puede definir la dispersión del retardo D_s como el valor rms de la diferencia de retardos de los rayos respecto al retardo medio, ponderada por la amplitud relativa de cada rayo.
- El **ancho de banda de coherencia** B_c indica en qué intervalo de frecuencias el canal varía significativamente.

Dispersión temporal: canal aleatorio


- Variación aleatoria de: número de rayos y parámetros de cada uno (amplitud, fase, retardo, frecuencia Doppler).
- Se define el perfil potencia-retardo P(τ) como la potencia media (en sentido estadístico) instantánea (para cada retardo) recibida cuando se transmite un pulso muy estrecho de energía unidad.
- Modelo usual: exponencial: $P(t) = A \cdot \exp(-\tau / \tau_m)$, $t \ge 0$.
- Se define la dispersión del retardo D_s como

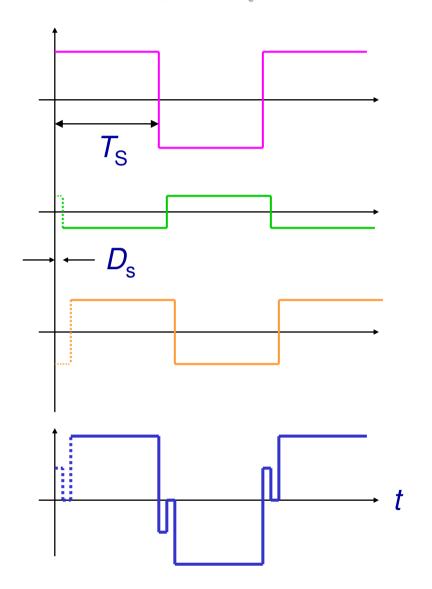
$$D_{s} = \frac{\int_{0}^{\infty} (\tau - \tau_{m})^{2} P(\tau) d\tau}{\int_{0}^{\infty} P(\tau) d\tau}, \qquad \tau_{m} = \frac{\int_{0}^{\infty} \tau P(\tau) d\tau}{\int_{0}^{\infty} P(\tau) d\tau}$$

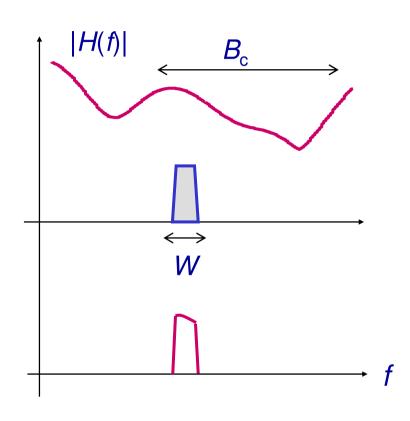
• El ancho de banda de coherencia B_c indica en qué intervalo de frecuencias el canal varía significativamente. $B_c \approx 1/D_s$.


Perfil potencia-retardo

Selectividad en frecuencia

- La dispersión temporal produce selectividad en frecuencia.
- El canal, con ancho de banda de coherencia B_c , se comporta como selectivo en frecuencia para una señal, de ancho de banda W, si $B_c \approx < W$.

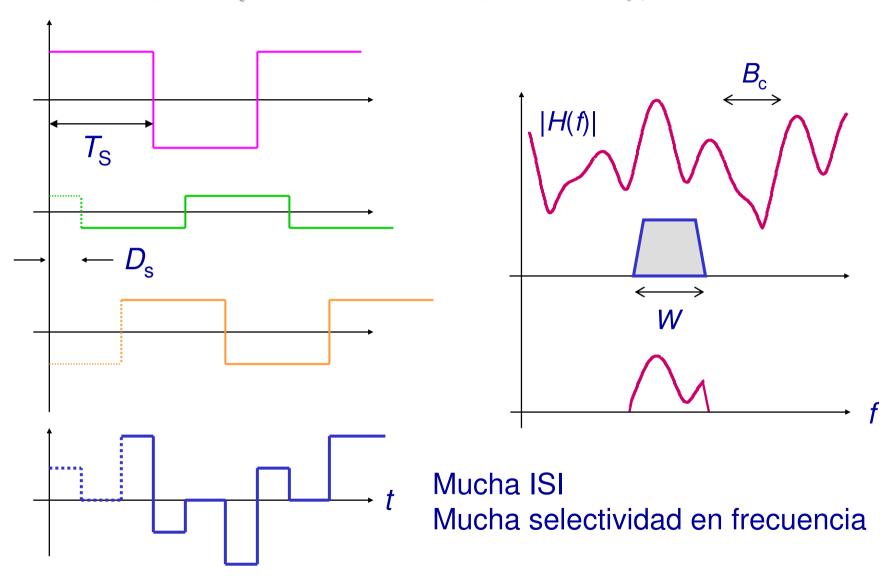

Interferencia entre símbolos


- La selectividad en frecuencia dentro de la señal
 - (+) reduce la variabilidad (desvanecimiento) del nivel recibido.
 - (–) distorsiona la señal, y puede producir interferencia entre símbolos.

$$B_{\rm c} < W$$
 \longleftrightarrow $D_{\rm s} > T_{\rm S}$ $W \approx 1/T_{\rm S}$ $B_{\rm c} \approx 1/D_{\rm s}$

- La interferencia entre símbolos debe compensarse con:
 - Ecualizadores
 - Espectro ensanchado.

Interferencia entre símbolos

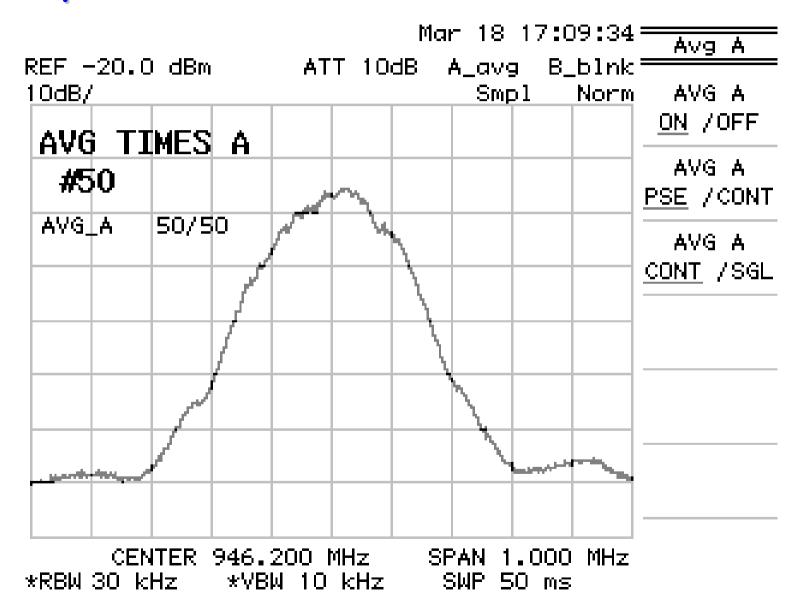


Poca ISI Poca selectividad en frecuencia

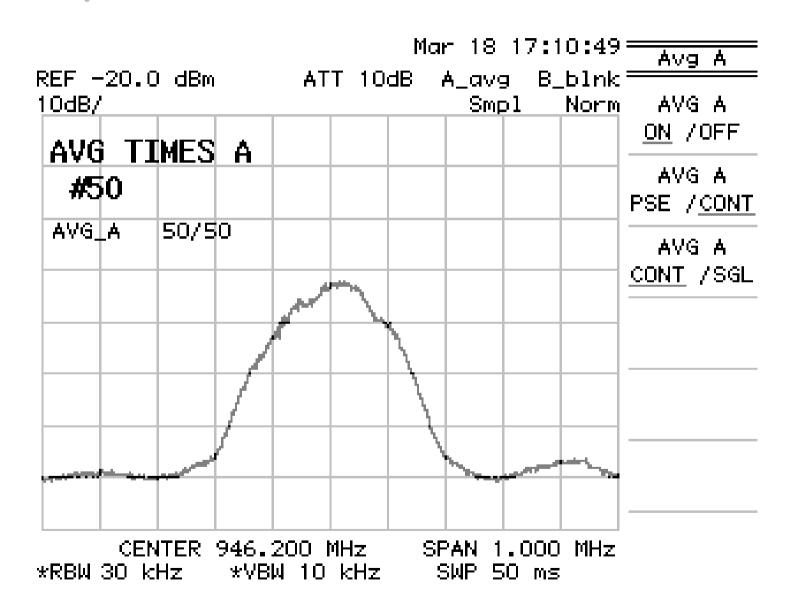
Interferencia entre símbolos

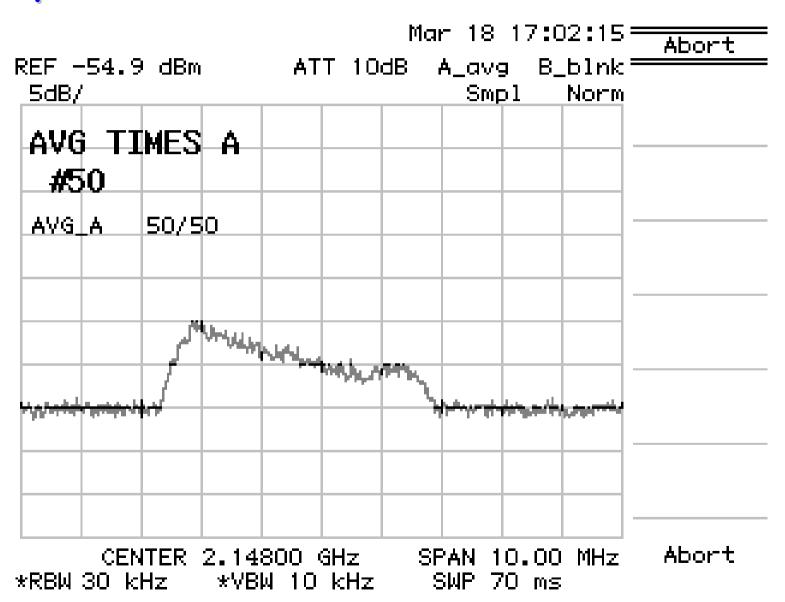
Ancho de banda de coherencia

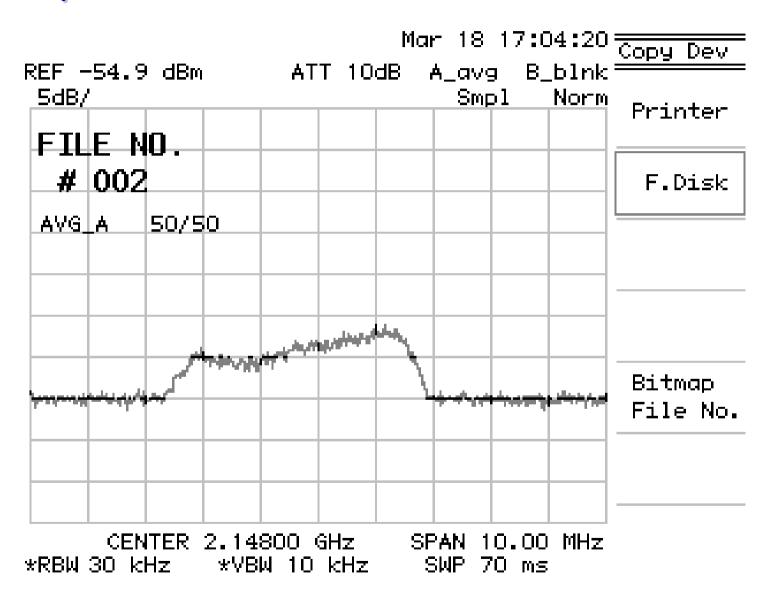
Valores típicos:

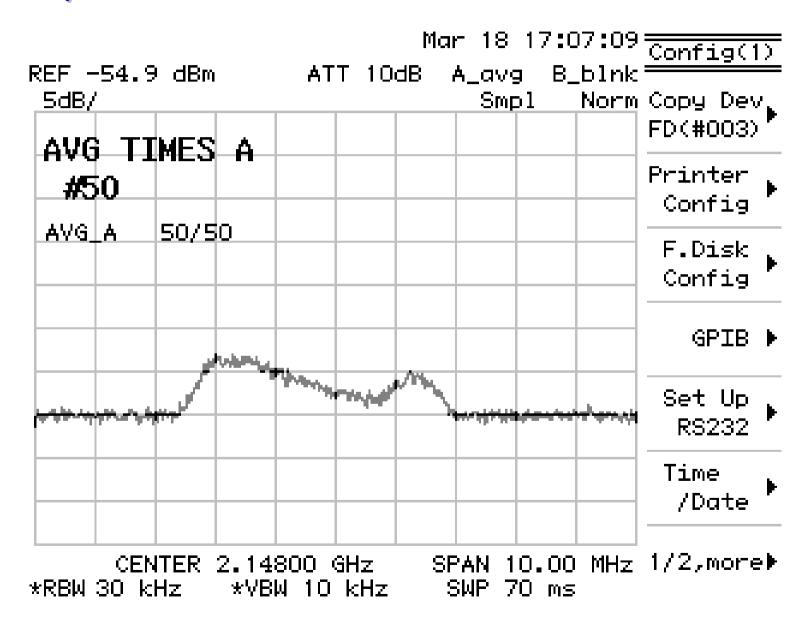

- Entorno de interiores: $D_s = 30 300 \text{ ns}$, $B_c = 3 30 \text{ MHz}$.
- Entorno urbano: $D_s = 300 \text{ ns} 3 \mu\text{s}$, $B_c = 300 \text{ kHz} 3 \text{ MHz}$.
- Entorno rural: $D_s = 1 10 \mu s$, $B_c = 100 kHz 1 MHz$.

Ejemplos:

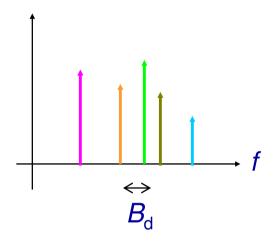

- Señal GSM, 200 kHz
- Señal UMTS, 5 MHz.


Espectro de señal GSM recibida

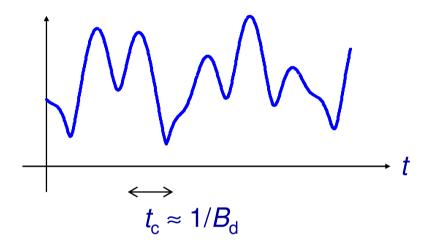

Espectro de señal GSM recibida


Espectro de señal UMTS recibida

Espectro de señal UMTS recibida



Espectro de señal UMTS recibida



Variación temporal: varios rayos

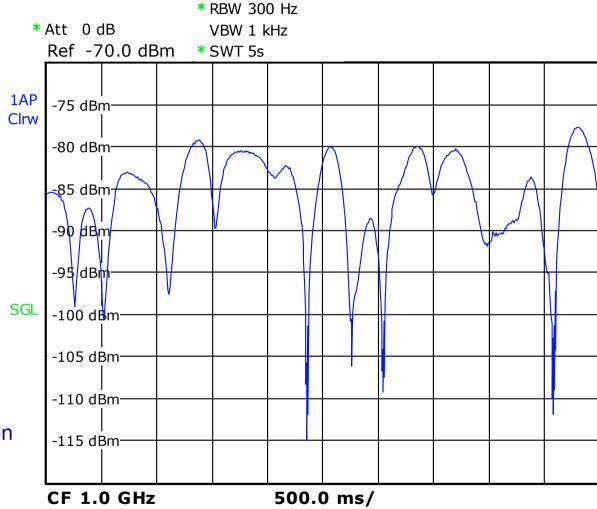
Respuesta a una sinusoide

Variación temporal

- Se puede definir la dispersión Doppler B_d como una medida de la separación típica de las frecuencias recibidas (por desplazamiento Doppler).
- El **tiempo de coherencia** $t_{\rm c}$ indica en qué intervalo de tiempo el canal varía significativamente. Es del orden del tiempo que tarda el móvil en recorrer $\lambda/2$.

Variación temporal: canal aleatorio

- Se define el **perfil Doppler** $S(\nu)$ como la densidad de potencia media (en sentido estadístico) recibida a la frecuencia $f_c + \nu$ cuando se transmite una sinusoide a la frecuencia portadora f_c .
- Modelo usual: espectro "clásico" o de Jakes:


$$S(v) = \frac{1}{2f_{d\max}\sqrt{1-(v/f_{d\max})^2}}$$

Físicamente representa una distribución uniforme de ángulos de llegada.

- Se define la **dispersión Doppler** $B_{\rm d}$ de forma análoga a la dispersión de retardo.
- El tiempo de coherencia t_c indica en qué intervalo de tiempo el canal varía significativamente. $t_c \approx 1/B_d$.

Variación temporal del desvanecimiento

Portadora de 1 GHz

Analizador de espectro con filtro estrecho y barrido (*span*) cero

Desplazamiento de la antena receptora de 1-2 m

Variación temporal y dispersión Doppler

- La variación temporal equivale a una dispersión en frecuencia (Doppler).
- La variación temporal a lo largo de la transmisión de la señal produce:
 - Degradación si t_c < $T_{\rm intervalo}$: falta de adaptación al canal (variabilidad interna en el "intervalo", entendido como el periodo de estimación de la respuesta del canal).
 - Distorsión si t_c < $T_{\text{símbolo}}$: casi nunca ocurre.

Efectos de la distorsión sobre el diseño y la planificación radio

- La presencia de distorsión degrada la calidad, y obliga a modificar el valor de la sensibilidad (o $E_{\rm R}/N_{\rm 0}$) dinámica.
- Por tanto, la sensibilidad dinámica incluye todos los efectos de multitrayecto: desvanecimiento y distorsión.
- En planificación radio se utilizan valores dinámicos de sensibilidad (o de $E_{\rm R}/N_{\rm 0}$).
- La especificación del sistema debe contemplar los efectos de la distorsión y las condiciones en que es posible contrarrestarlos. Por ejemplo:
 - Velocidad máxima del móvil (t_c)
 - Retardo máximo ecualizable ($D_{\rm s}$)

Recapitulación

 $\alpha = 1/I_{\rm b}$ Efecto de multitrayecto Efecto de sombra

$$\alpha_{\text{real inst}} = \alpha_{\text{modelo}} \cdot \alpha_{\text{sombra}} \cdot \alpha_{\text{multitray}}$$

 $\alpha_{\rm real\ media}$: valor medio de $\alpha_{\rm real\ inst}$ respecto a variaciones por multitrayecto (la media de $\alpha_{\rm real\ inst}$ es igual a 1)

 $\alpha_{\rm modelo}$: valor mediano de $\alpha_{\rm real\ media}$ (la mediana de $\alpha_{\rm sombra}$ es igual a 1)

$$P_{r} = P_{t} + G_{t} + G_{r} - L_{tt} - L_{tr} - L_{b}$$

$$S_{din} = P_{t} + G_{t} + G_{r} - L_{tt} - L_{tr} - L_{b real media}$$

$$P_{r mediana} = P_{t} + G_{t} + G_{r} - L_{tt} - L_{tr} - L_{b modelo}$$