Capítulo 4: Sistemas celulares clásicos (FDMA/TDMA)

Sistemas celulares clásicos (FDMA/TDMA)

- 1. Concepto celular clásico.
- 2. Estructura celular y cálculo de interferencias.
- 3. Dimensionamiento.
- 4. Arquitectura general. Funciones relacionadas con la movilidad.

1. Concepto celular clásico

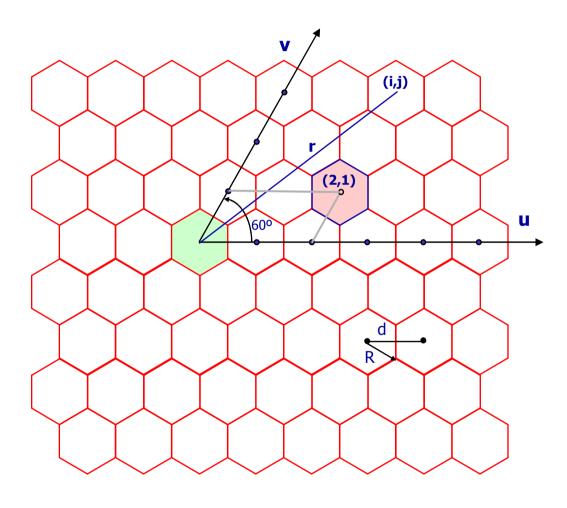
Sistemas iniciales (no celulares)

- Una única estación base para cubrir la zona deseada (ciudad y alrededores).
- "Receptores satélite" para equilibrar la cobertura ascendente con la descendente.
- FDMA (FM de 25-30 kHz, voz).
- Limitaciones de cobertura y de capacidad.

Concepto celular clásico

- Sistemas FDMA o FDMA/TDMA.
- División de la zona de cobertura en zonas más pequeñas, llamadas células o celdas. Cada célula es atendida por una base.
- Reutilización de las frecuencias en células suficientemente alejadas.
- En sistemas FDMA/TDMA, la unidad mínima de reutilización es el radiocanal (no el intervalo temporal).

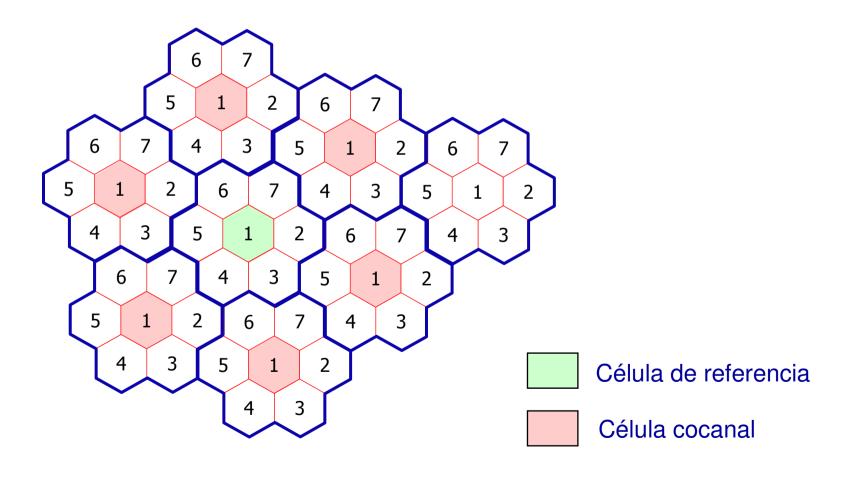
Conceptos relacionados


- Se consideran (idealmente) células hexagonales.
- Células cocanal: las que utilizan la misma frecuencia.
 Están separadas la distancia de reutilización, D.
- Relación de protección, R_p : mínima C/I necesaria. Depende del sistema (modulación, codificación, calidad objetivo, ...).
 - Cocanal. Ej: 9 dB en GSM.
 - De canal adyacente: Ej: –9 dB en GSM.
- Agrupación o cluster: conjunto de células que utilizan canales diferentes. El número de células por agrupación es el tamaño de la agrupación, N.

2. Estructura celular y cálculo de interferencias

Geometría de las redes celulares

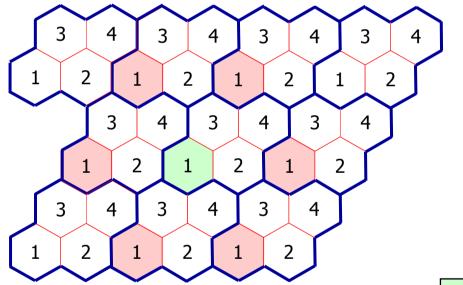
- Ejes a 60^o
- Paso de la red: d
- Radio celular: R


$$d=\sqrt{3}R$$

$$S_{\text{c\'elula}} = \frac{3 \cdot \sqrt{3} R^2}{2} = \frac{\sqrt{3}}{2} d^2$$

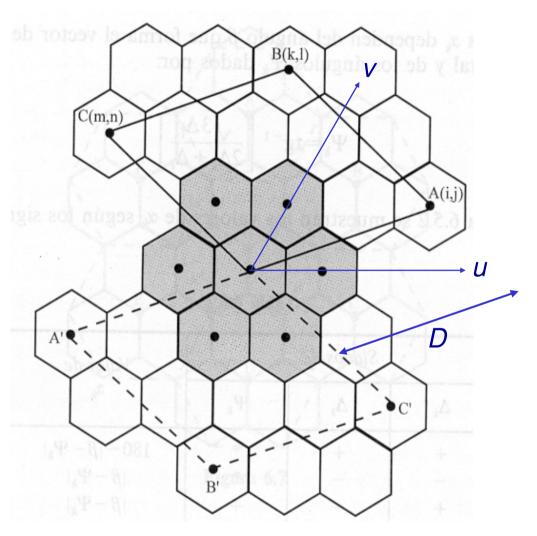
$$r(i,j) = d\sqrt{i^2 + j^2 + i \cdot j}$$

Agrupación celular


Ejemplo: N = 7

Agrupación celular

Ejemplo: N = 4



Célula de referencia

Célula cocanal

10

Distancia de reutilización

• Área de la agrupación:

$$S_{\text{agrup}} = NS_{\text{c\'elula}} = \frac{\sqrt{3}}{2} N d^2$$

Área del rombo:

$$S_{\text{rombo}} = \frac{\sqrt{3}}{2} D^2$$

• $S_{\text{agrup}} = S_{\text{rombo}}$:

$$\Rightarrow D^2 = Nd^2$$

Tamaños de agrupación posibles

- La distancia entre la base de referencia (0,0) y una base cocanal (i,j) es, por definición, D.
- Dicha distancia se expresa en función de *i,j* como

$$D = d\sqrt{i^2 + j^2 + i \cdot j}$$

• Como $N = D^2/d^2$, resulta

$$N = i^2 + j^2 + i \cdot j$$

 Dado que las coordenadas i, j de las bases deben ser números enteros, sólo son posibles N que cumplan la expresión anterior con i, j enteros: números rómbicos.

i	j	Ν
1	1	3
0	2	4
1	2	7
-1	3	7
0	3	9

Tamaño de agrupación

Efecto de *N*:

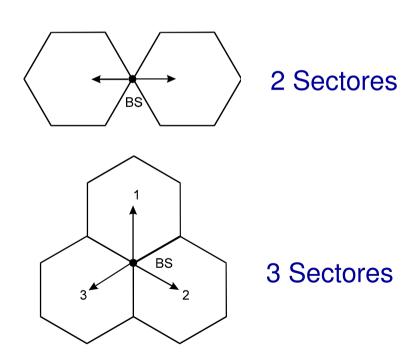
• Interesa *N* bajo, para reutilizar más las frecuencias:

 N° frecuencias por célula = N° total de frecuencias / N

Pero N bajo implica C/I baja.

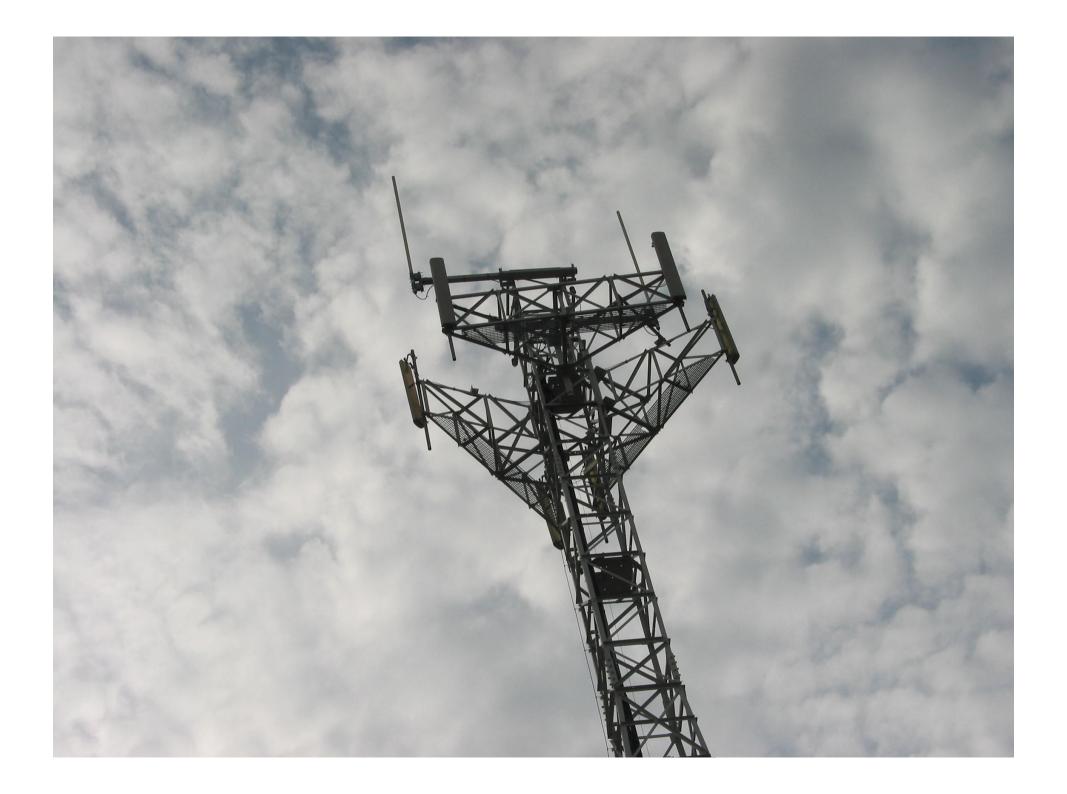
De acuerdo con esto,

- Debe buscarse el menor N posible que cumpla el requisito de R_p .
- Se suelen incluir márgenes por variabilidad (desvanecimiento) de señal e interferencias.

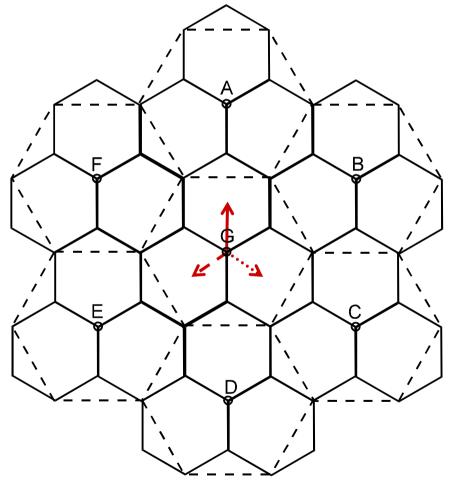


Células omnidireccionales y sectorizadas

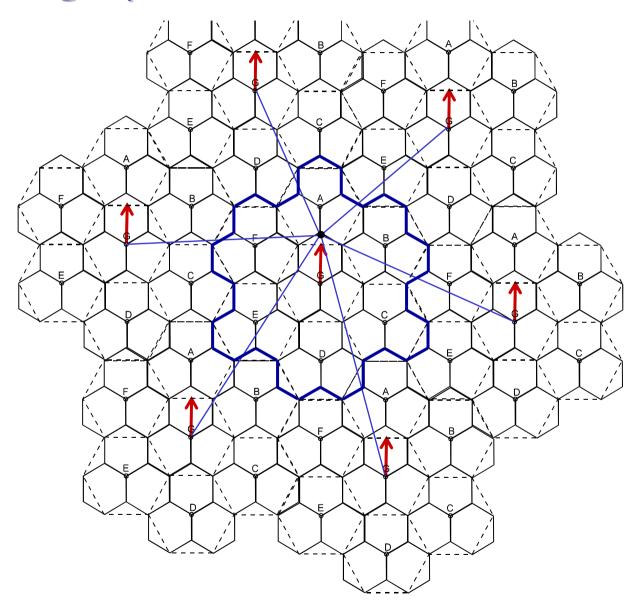
1. Cobertura omnidireccional



2. Cobertura sectorizada


Células sectorizadas

- Base en el centro de la célula con m antenas directivas.
 Cada antena cubre un sector.
- En la agrupación hay N células y N·m sectores.
- Habitualmente se usan células trisectorizadas (m = 3), con antenas de ancho de haz (a -3 dB) de unos 65° .
- Características de las estructuras sectorizadas:
 - (+) Mejor cobertura (mayor ganancia de cada antena).
 - (-) Más equipos por emplazamiento.
 - (+) Normalmente permiten usar *N* más bajo que con células omnidireccionales, ya que la directividad de la antena reduce la interferencia.

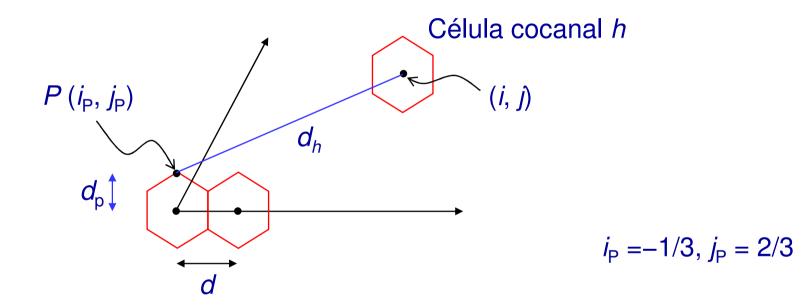

Agrupación celular sectorizada

Ejemplo: N = 7, m = 3

Agrupación celular sectorizada

Cálculo de interferencia

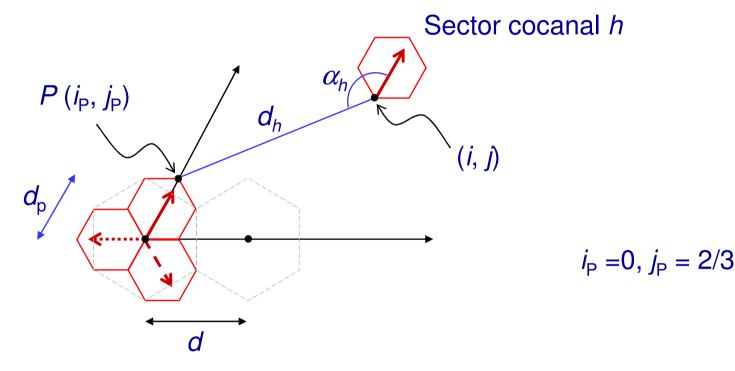
- El objetivo es ver si una asignación de frecuencias (patrón de reutilización) es viable, es decir, si cumple los requisitos de *C/I*.
- Se analizan por separado UL y DL (a veces sólo DL).
- Procedimiento:
 - 1. Se determina la zona de cobertura de la célula, definida por la condición $P_r > S + M$, siendo S la sensibilidad y M el margen por desvanecimiento.
 - 2. Para cada punto de la zona de cobertura se calcula C/I.
 - 3. Se debe cumplir $C/I > R_p$ en un cierto porcentaje p del área de la célula.
 - 4. Se puede incluir un margen adicional M' para tener en cuenta la **variabilidad de la interferencia**, en cuyo caso la condición es $C/I > R_p + M'$.


C/I en redes hexagonales regulares

- Estudio simplificado.
- Enlace descendente.
- Se tiene en cuenta sólo la primera corona de células cocanal.
- Se supone que todas las células interferentes están usando el canal considerado (caso peor).
- Se consideran todas las bases iguales: mismas antenas (diagramas de radiación) y potencia transmitida.
- Se considera un modelo de propagación de tipo potencial: $I_b = k \cdot d^n$ (no se tienen en cuenta irregularidades del terreno).
- Se realiza el cálculo en el punto más alejado de la base, P.
- En redes sectorizadas debe tenerse en cuenta el diagrama de radiación, $g(\alpha)$.

C/I en redes hexagonales regulares

Caso omnidireccional


$$\frac{C}{i} = \frac{d_{P}^{-n}}{\sum_{h=1}^{6} d_{h}^{-n}}$$

$$d_{P} = d\sqrt{i_{P}^{2} + j_{P}^{2} + i_{P}j_{P}}$$

$$d_h = d\sqrt{(i_h - i_P)^2 + (j_h - j_P)^2 + (i_h - i_P)(j_h - j_P)}$$

C/I en redes hexagonales regulares

Caso sectorizado

$$\frac{c}{i} = \frac{d_P^{-n}}{\sum_{h=1}^6 g(\alpha_h) d_h^{-n}}$$

$$d_{P} = d\sqrt{i_{P}^{2} + j_{P}^{2} + i_{P}j_{P}}$$

$$\frac{c}{i} = \frac{d_P^{-n}}{\sum_{h=1}^6 g(\alpha_h) d_h^{-n}} \qquad d_P = d\sqrt{i_P^2 + j_P^2 + i_P j_P}$$

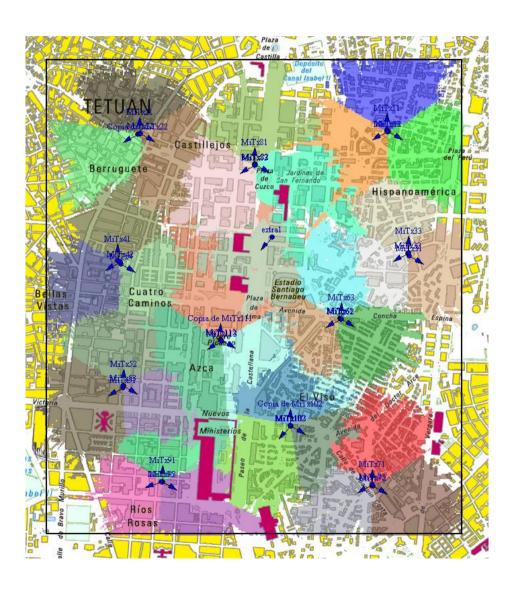
$$d_P = d\sqrt{i_P^2 + j_P^2 + i_P j_P}$$

$$d_P = d\sqrt{(i_P - i_P)^2 + (j_P - i_P)^2 + (i_P - i_P)(j_P - i_P)}$$

Cálculo realista

Condiciones:

- Células con forma arbitraria en función del terreno.
- Ubicaciones limitadas por la disponibilidad de emplazamientos.
- Número de frecuencias diferente en cada célula o sector.
- Células o sectores de diferentes tamaños.
- No hay un patrón de reutilización regular.
- Los parámetros radio (potencias, número de sectores, orientación de antenas, ...) pueden ser diferentes en cada base.

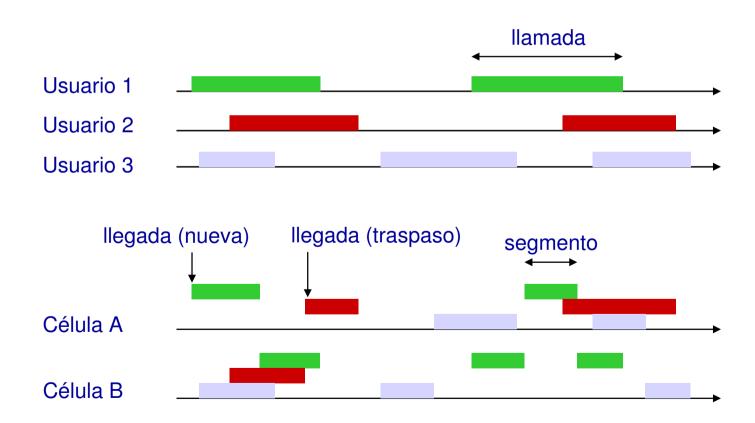

Procedimiento:

- Se utilizan herramientas software con mapas digitales y modelos de propagación más detallados.
- Se realiza el cálculo de C/I en toda la zona cubierta: mapa de C/I.
- Se comprueba si en un porcentaje p del área cubierta se supera R_p , o bien $R_p + M'$.

Cálculo realista

Ejemplo: red celular sectorizada en entorno urbano

3. Dimensionamiento


Modelo de tráfico

- El objetivo es saber cuántos canales (intervalos de tiempo o portadoras) se necesitan en una célula o sector.
- Hipótesis:
 - Las llegadas siguen un proceso de Poisson (válido cuando hay muchos usuarios: aproximación de población infinita).
 - El tiempo de servicio sigue una distribución exponencial.
 - Un solo tipo de servicio, por conmutación de circuitos.
- Tratamiento de la congestión:
 - -Sistemas de bloqueo o pérdidas (PLMN): GoS = Pr [llamada bloqueada] = $P_{\rm B}$
 - Sistemas de espera (PMR, PAMR):GoS = Pr [espera > tiempo de referencia].

Modelo de tráfico

- Debido a la movilidad (traspaso entre células), la llamada se divide en "segmentos", dando lugar a varias "llegadas" (nuevas o traspasos).
- El tráfico generado por un usuario se reparte entre varias células.

Tráfico ofrecido

- Tráfico ofrecido en la célula/sector, A: número medio de canales ocupados suponiendo que todas las llegadas son aceptadas.
- Tráfico ofrecido por usuario, a: porcentaje de ocupación que genera un usuario, suponiendo que todas sus llegadas son aceptadas.
- El tráfico ofrecido por célula (sector), *A*, puede calcularse como el tráfico ofrecido por usuario, *a*, multiplicado por el número medio de usuarios en la célula (sector), *M*.

$$A = \frac{\lambda}{\mu} = \frac{T_{\text{segmento}}}{T_{\text{entre llegadas a la cel./sec.}}} \qquad a = \frac{T_{\text{llamada}}}{T_{\text{entre llamadas individuales}}} \qquad A = M \cdot a$$

 T_{segmento} : duración media de un segmento

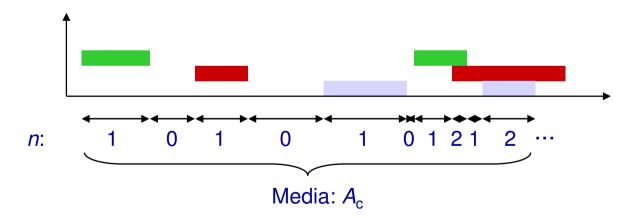
 $T_{\text{entre llegadas}}$: tiempo medio entre llegadas a la célula (nuevas o traspasos)

 λ : tasa de llegadas a la célula. $\lambda = 1/T_{\text{entre llegadas a la cél./sec.}}$

 μ : tasa de servicio en la célula. μ = 1/ $T_{\rm segmento}$

 $T_{\text{entre Ilamadas individuales}}$: tiempo medio entre Ilamadas por usuario

 T_{llamada} : duración media de la llamada, suponiendo que no hay caídas



29

Tráfico cursado

- Tráfico cursado en la célula/sector, A_c: número medio de canales ocupados en la célula/sector.
- Es medible:

$$A_{c} = \frac{T_{\text{segmento}}}{T_{\text{entre llegadas aceptadas}}} = \text{E[núm. canales ocupados]}$$
$$= \sum_{n} n \text{Pr[} n \text{ canales ocupados]}$$

- Sistemas de bloqueo: $A_c = A \cdot (1 P_B) < A$
- Sistemas de espera: A_c = A

Resultados: sistemas de bloqueo

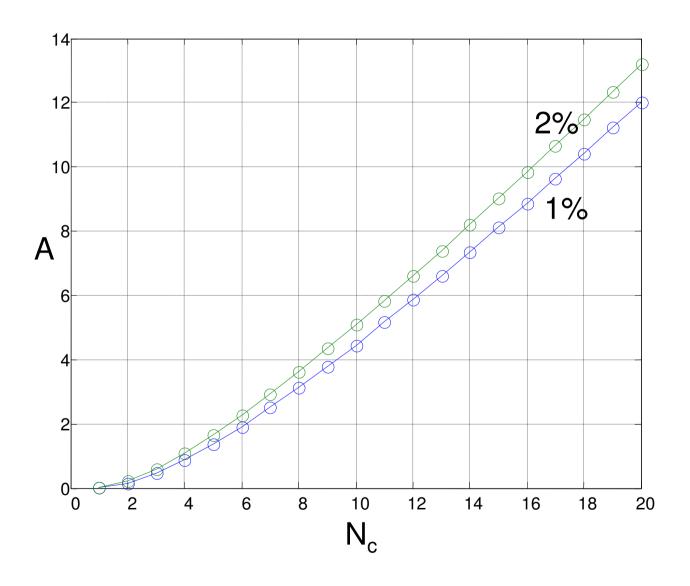
 N_c : número de canales de tráfico en la célula/sector

$$\Pr[n \text{ canales ocupados}] = \frac{A^n / n!}{\sum_{k=0}^{N_c} A^k / k!}$$

$$P_B = \Pr[N_c \text{ canales ocupados}] = \frac{A^{N_c} / N_c!}{\sum_{k=0}^{N_c} A^k / k!} = B(N_c, A)$$

 $B(N_c,A)$: función Erlang-B

- $P_{\rm B}$ coincide con $\Pr[N_{\rm c}$ canales ocupados] debido a la hipótesis (aproximación) de población infinita.
- La probabilidad de bloqueo para traspasos, $P_{\rm h}$, es, en principio, igual a $P_{\rm B}$ (el sistema trata por igual todas las llegadas).
- Puede configurarse el sistema para reducir P_h a costa de aumentar P_B ; por ejemplo, reservando canales para traspasos.



Erlang-B

	1%	2%		1%	2%
1	0.0101	0.0204	21	12.8378	14.0360
2	0.1526	0.2235	22	13.6513	14.8959
3	0.4555	0.6022	23	14.4705	15.7609
4	0.8694	1.0923	24	15.2950	16.6306
5	1.3608	1.6571	25	16.1246	17.5046
6	1.9090	2.2759	26	16.9588	18.3828
7	2.5009	2.9354	27	17.7974	19.2648
8	3.1276	3.6271	28	18.6402	20.1504
9	3.7825	4.3447	29	19.4869	21.0394
10	4.4612	5.0840	30	20.3373	21.9316
11	5.1599	5.8415	32	22.0483	23.7249
12	5.8760	6.6147	34	23.7720	25.5291
13	6.6072	7.4015	36	25.5070	27.3431
14	7.3517	8.2003	38	27.2525	29.1662
15	8.1080	9.0096	40	29.0074	30.9973
16	8.8750	9.8285	42	30.7712	32.8360
17	9.6516	10.6558	44	32.5430	34.6817
18	10.4369	11.4909	46	34.3223	36.5337
19	11.2301	12.3330	48	36.1086	38.3916
20	12.0306	13.1815	50	37.9014	40.2551

Erlang-B

Resultados: sistemas de espera

 N_c : número de canales de tráfico en la célula/sector

$$P_{\text{espera}} = \frac{1}{1 + \left(1 - \frac{A}{N_{c}}\right) \frac{N_{c}!}{A^{N_{c}}} \sum_{k=0}^{N_{c}-1} \frac{A^{k}}{k!}} = C(N_{c}, A)$$

Pr[t de espera > t_{ref}] = Pr[espera]·Pr[t de espera > t_{ref} | espera] = $C(N_c, A) \cdot e^{-(N_c - A)t_{ref} \mu}$

C(N_c,A): función Erlang-C

$$C(N_{c}, A) = \frac{N_{c}B(N_{c}, A)}{N_{c} - A[1 - B(N_{c}, A)]}$$

Capacidad en sistemas celulares

 El dimensionamiento se hace por célula, o por sector si es una red sectorizada.

$$A = M \cdot a = S \cdot d \cdot a = S \cdot \rho$$

d: densidad de usuarios (usuarios/km²)

S: superficie de la célula o sector

 ρ : densidad de tráfico (E/km²): $\rho = d \cdot a$

- Dados N_c y P_B , puede determinarse $A = B^{-1}(P_B, N_c)$
- Para poder atender una mayor densidad de tráfico (ρ) puede recurrirse a **disminuir el tamaño** de las células o sectores.
- Eficiencia espectral (E/km²/MHz):

$$\eta = \frac{\rho}{B_{\text{total}}} = \frac{B^{-1}(P_{\text{B}}, N_{\text{c}})}{B_{\text{total}} \cdot S}$$

 B_{total} : ancho de banda total del sistema

Capacidad: ejemplo

GSM 900 MHz: radiocanales de 200 kHz, 8 canales/radiocanal (TDMA)

 $B_{\text{total}} = 12,5 \text{ MHz (para cada sentido)}$

2 canales para señalización.

$$P_{\rm B} = 1\%$$
.

 $\rho = 20 \text{ E/km}^2$.

Estructura celular:

- 1) omnidireccional con N = 7
- 2) sectorizada con N = 4, m = 3.

Se supone que ambas cumplen los requisitos de C/I.

¿S, η?

¿Densidad de emplazamientos?

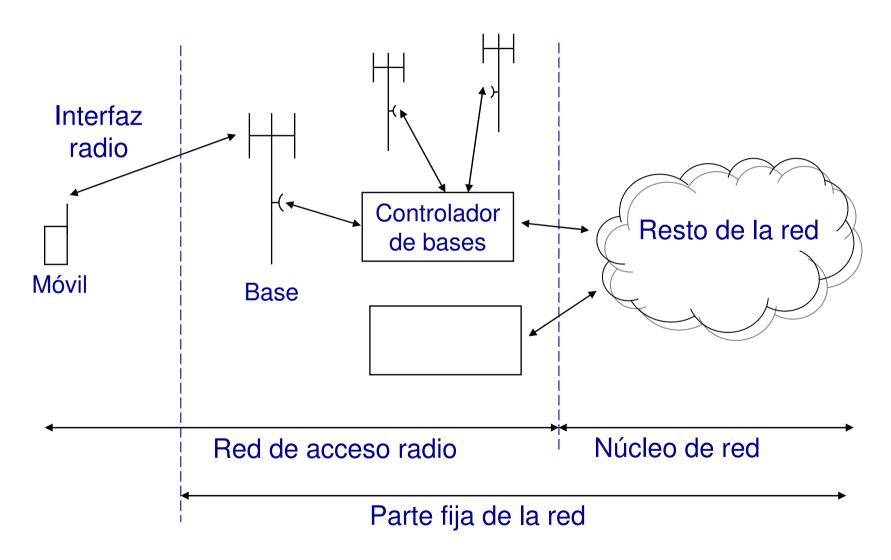
Capacidad: ejemplo

1) Hay 12,5/0,2 = 62 radiocanales en total. Pueden asignarse $62/7 \approx 9$ radiocanales por célula. $N_c = 9*8-2 = 70$ canales de tráfico por célula. A = 56,1 E por célula.

$$S_{\text{c\'elula}} = A/\rho = 2.8 \text{ km}^2.$$

 $\eta = 56.1 / (12.5 \cdot 2.8) = 1.6 \text{ E/km}^2/\text{MHz} = \rho / B_{\text{total}}.$
Densidad de emplazamientos $\approx 1/S_{\text{c\'elula}} = 0.36 \text{ km}^{-2}.$

2) Pueden asignarse $62/(4*3) \approx 5$ radiocanales por sector. $N_{\rm c} = 5*8-2 = 38$ canales de tráfico por sector. A = 27,3 E por sector. $S_{\rm sector} = A/\rho = \underline{1,48 \text{ km}^2}.$ $\eta = \underline{1,6 \text{ E/km}^2/\text{MHz}}.$


Densidad de emplazamientos $\approx 1/(m \cdot S_{\text{sector}}) = 0.23 \text{ km}^{-2}$.

La estructura sectorizada con N=4, m=3, comparada con la omnidireccional con N=7, requiere menos emplazamientos para la misma capacidad (ρ) .

4. Arquitectura general. Funciones relacionadas con la movilidad

Arquitectura general

Funciones relacionadas con la movilidad

- Registro/desregistro del móvil en la red (attach/detach).
- Actualización de posición:
 - Área de localización (location area, LA): conjunto de células.
 - La red conoce en todo momento la LA del móvil.
- Aviso al móvil (paging): se hace en la LA en que se encuentra.
- Reselección de célula:
 - El móvil sin llamada en curso elige la célula "mejor" en cada momento.
 - La elección se basa en medidas hechas sobre un canal piloto transmitido por cada base, y en información enviada por la red.
- Traspaso (handover, o handoff)
 - Cambio de célula con llamada en curso.
 - Suele ser controlado por la red, usando medidas realizadas por las bases así como medidas realizadas y enviadas por el móvil.
- Autentificación, cifrado:
 - Son necesarios por seguridad, sobre todo en la interfaz radio.

