

Modelo de estado

- Concepto de estado
- · Ecuaciones del modelo de estado
- · Representación gráfica de sistemas lineales
- · Transformaciones lineales del estado
- · Métodos de obtención modelos de estado
- · F.d.T. y modelo de estado

P. Campoy

Control en el Espacio de Estado

1

Concepto de estado (1/2)

- · Definición:
 - es la cantidad mínima de información necesaria para conocer cualquier variable del sistema en cualquier otro instante posterior, conocida la entrada entre ambos instantes
- Nomenclatura:
 viene expresado mediante el vector de variables
 de estado x(t) de dimensión n

$$y(t) = Ψ(t; t0; x(t0); u(τ))$$
 $t0 < τ≤t$

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

Concepto de estado (2/2)

Espacio de estado:
 es el espacio vectorial en el que el que toma valores el vector de estado x(t)

$$\mathbf{x}(t) = \Psi(t; t_0; \mathbf{x}(t0); \mathbf{u}(\tau))$$
 $t_0 < \tau \le t$

- · Las trayectorias del vector de estado cumplen:
 - Continuidad, unicidad, transitividad

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

3

Ecuaciones del modelo de estado

- Ecuación de salida:

$$y(t)=g(t, x(t), u(t))$$

- Ecuación diferencial con dinámica del estado $\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \mathbf{u}(t))$
- Dimensiones de los vectores
 - n: número de variables de estado, dimensión de x
 - m: número de entradas, dimensión de u
 - p: número de salidas, dimensión de y

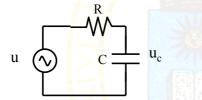
U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

Ejercicio 1.1

1.-razonar cuantas variables de estado tiene este sistema



- 2.- razonar si las siguientes variables pueden ser variables de estado: u, u_c, u_R, i
- 3.- razonar si existen y cuales son otras posibles variables de estado
- 4.- escribir las ecuaciones de estado del sistema

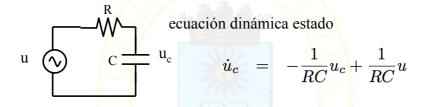
U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

5

Solución ejercicio 1.1



ecuación salida:

$$\begin{bmatrix} u_c \\ u_R \\ i \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1/R \end{bmatrix} u_c + \begin{bmatrix} 0 \\ 1 \\ 1/R \end{bmatrix} u$$

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

Ecuaciones del modelo de estado: sistemas lineales

- Definición de sistema lineal:

$$\begin{array}{c} \mathbf{x}_1(t_0) \xrightarrow{\mathbf{u}_1(\tau)} \mathbf{y}_1(t) \\ \mathbf{u}_2(\tau) \xrightarrow{\mathbf{v}_2(t_0)} \mathbf{y}_2(t) \end{array} \\ \Rightarrow \begin{array}{c} \mathbf{a}\mathbf{u}_1(\tau) + \mathbf{b}\mathbf{u}_1(\tau) \\ \mathbf{a}\mathbf{x}_1(t_0) + \mathbf{b}\mathbf{x}_1(t_0) \xrightarrow{\mathbf{a}\mathbf{y}_1(t) + \mathbf{b}\mathbf{y}_2(t)} \end{aligned}$$

- Ecuaciones de estado de sistemas lineales:

dimensiones:

Control en el Espacio de Estado

7

Ecuaciones del modelo de estado: sistemas lineales invariante

- Definición de sistema invariante:

$$\mathbf{x}(t_0) = \mathbf{x}_0 \xrightarrow{t_0 < \tau \le t} \mathbf{y}_1(t) \Longrightarrow \mathbf{x}(t_0 + T) = \mathbf{x}_0 \xrightarrow{t_0 < \tau \le t} \mathbf{y}_1(t) \mathbf{y}_1(t)$$

- Ecuaciones de estado de sistemas invariantes:

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t))$$
 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$

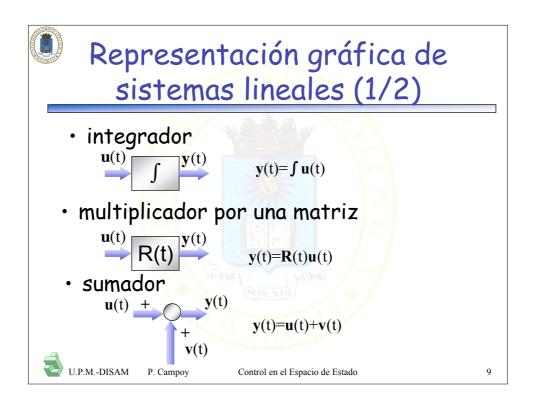
- Ecuaciones de estado de sistemas lineales invariantes:

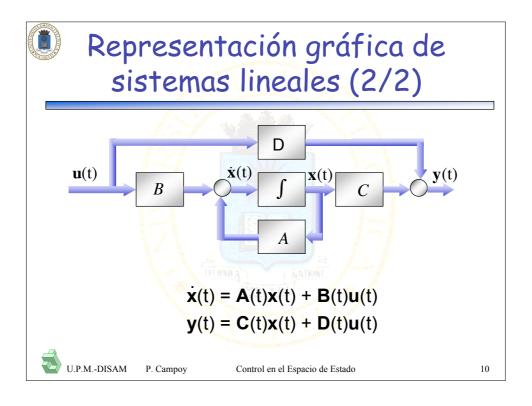
$$\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)$$

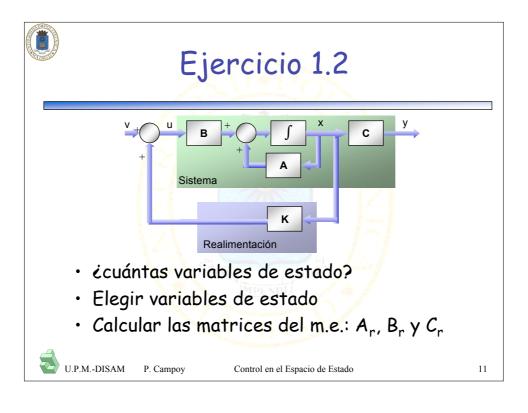
 $\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t)$

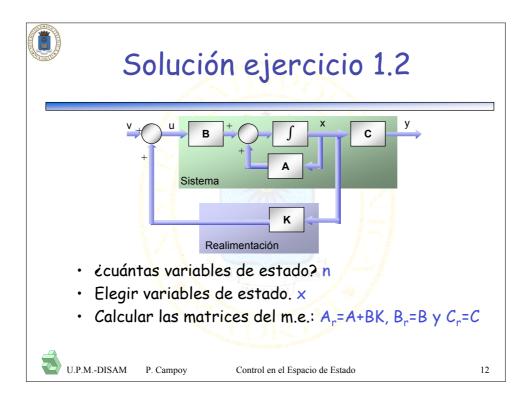
P. Campoy

Control en el Espacio de Estado









Modelo de estado

- · Concepto de estado
- · Ecuaciones del modelo de estado
- · Representación gráfica de sistemas lineales
- · Transformaciones lineales del estado
- · Métodos de obtención modelos de estado
- · F.d.T. y modelo de estado

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

13

Transformaciones lineales en el espacio de estado

· Cambio de base:

$$x(t) = T\tilde{x}(t)$$

$$\tilde{x}(t) = T^{-1}x(t)$$

· Ecuaciones estado en la nueva base:

$$\widetilde{x}(t) = \underbrace{T^{-1}AT}_{\widetilde{A}}\widetilde{x}(t) + \underbrace{T^{-1}B}_{\widetilde{B}}u(t)$$

$$y(t) = \underbrace{CT}_{\tilde{C}} \tilde{x}(t) + Du(t)$$

U.P.M.-DISAM

P. Campov

Control en el Espacio de Estado

Modelo de estado

- · Concepto de estado
- · Ecuaciones del modelo de estado
- · Representación gráfica de sistemas lineales
- · Transformaciones lineales del estado
- · Métodos de obtención modelos de estado
- · F.d.T. y modelo de estado

P. Campoy

Control en el Espacio de Estado

15

Métodos para la obtención de modelos de estado

- · Variables de estado como magnitudes físicas
- · Variables de estado como salida de integradores
- · Variables de estado de fase
- Variables de estado de Jordan

U.P.M.-DISAM

P. Campov

Control en el Espacio de Estado

ventajas matematicas

del modelo

Variables de estado como magnitudes físicas

- · Son v.e. las magnitudes físicas que almacenan la energía del sistema, no pudiendo presentar discontinuidades.
- · Ejemplos:
 - Sistemas hidraúlicos:
 - · altura de los depósitos (energia potencial)
 - Sistemas eléctricos:
 - · tensiones en los condensadores
 - intensidades en las bovinas
- - •posición (energía potencial)
 - velocidad (energía cinética)
- -Sistemas térmicos:

-Sistemas mecánicos:

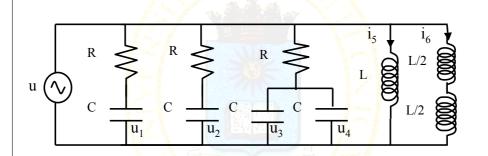
•temperatura (energía térmica)

P. Campoy

Control en el Espacio de Estado

17

V.e. Como magnitudes físicas



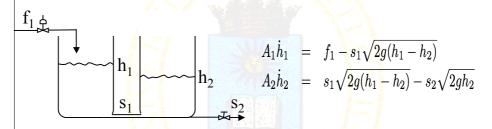
• V.e.: u₁, u₂, u₃, i₅, i₆

U.P.M.-DISAM

P. Campov

Control en el Espacio de Estado

Problema 1



- Hallar un modelo de estado no-lineal
- Hallar un modelo de estado linealizado en torno a un punto de equilibrio elegido
- Discutir variables de estado cuando s1→∞ 3.

U.P.M.-DISAM

Control en el Espacio de Estado

19

Problema 1: solución

1.- Modelo de estado no lineal:

$$A_1 \dot{h}_1 = f_1 - s_1 \sqrt{2g(h_1 - h_2)}$$

$$A_2 \dot{h}_2 = s_1 \sqrt{2g(h_1 - h_2)} - s_2 \sqrt{2gh_2}$$

2.- Modelo de estado lineal:

$$A_{1}\dot{h}_{1} = -\frac{s_{1}\sqrt{2g}}{2\sqrt{(h_{1} - h_{2})}}\bigg|_{0}h_{1} + \frac{s_{1}\sqrt{2g}}{2\sqrt{(h_{1} - h_{2})}}\bigg|_{0}h_{2} + f_{1}$$

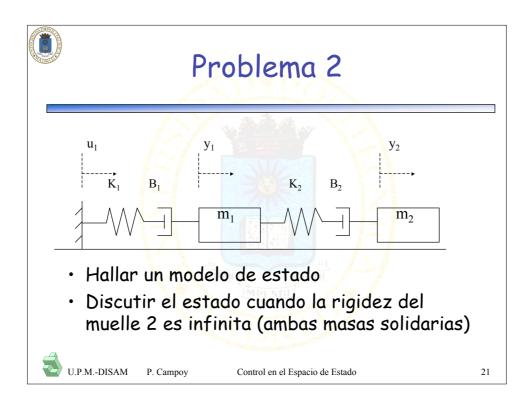
$$A_{2}\dot{h}_{2} = \frac{s_{1}\sqrt{2g}}{2\sqrt{(h_{1} - h_{2})}}\bigg|_{0}h_{1} - \left(\frac{\sqrt{2g}s_{1}}{2\sqrt{(h_{1} - h_{2})}} + \frac{\sqrt{2g}s_{2}}{2\sqrt{h_{2}}}\right)\bigg|_{0}h_{2} - \sqrt{2gh_{2}}\bigg|_{0}s_{2}$$

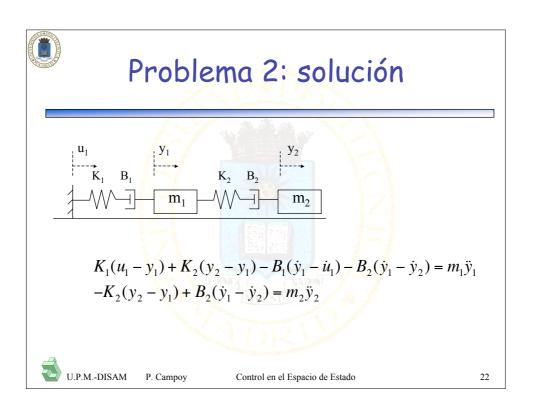
3.- Si
$$s_1 \rightarrow \infty$$
 se tiene una única variable de estado: $(A_1 + A_2)\dot{h} = f_1 - s_2\sqrt{2gh}$

U.P.M.-DISAM

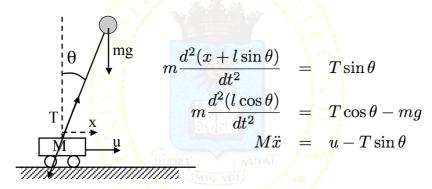
P. Campoy

Control en el Espacio de Estado





Problema 3



• Hallar un modelo de estado no lineal y otro linealizado en torno a θ_0 =0 y x_0 =0

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

23

Variables de estado como salida de integradores

 Si las ecuaciones del sistema se pueden escribir como ecuaciones integrales, las salidas de los integradores son las variables de estado.

$$\dot{x}(t) = f(t, x(t), u(t))$$

$$x(t) = \int f(t, x(t), u(t))$$

y por tanto representan las condiciones iniciales de necesarias para su resolución

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

Ejemplos 2.3

· En sistemas lineales:

$$\dot{y}(t) + by(t) = K\dot{u}(t) + Kau(t)$$

$$\ddot{y}(t) + a\dot{y}(t) + by(t) = K\dot{u}(t) + Kcu(t)$$

· En sistemas no-lineales:

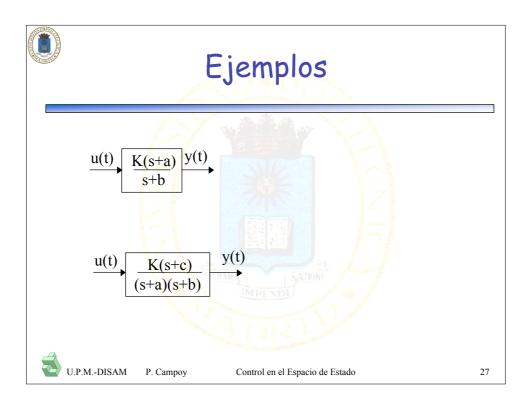
Control en el Espacio de Estado

25

Variables de estado como salida de sistemas sencillos

 Descomponer el sistema total en sistemas de orden bajo, eligiendo entonces como v.e. las salidas y derivadas de la salida que no puedan presentar discontinuides.

Control en el Espacio de Estado



Variables de estado de fase

- Sistema monovariable: $b_ns^n+\ldots+b_1s+b_0\ y=rac{b_ns^n+\ldots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+\ldots+a_1s+a_0}u$
- Elección de v.e.: $x_1=rac{1}{s^n+a_{n-1}s^{n-1}+\cdots+a_0}u$

$$x_2 = \dot{x}_1 \quad x_3 = \dot{x}_2 \quad \cdots \quad x_n = \dot{x}_{n-1}$$

Variables de estado de Jordan (1/2)

• Sistema monovariable con polos simples
$$y = \left(b_n + \frac{\rho_1}{s - \lambda_1} + \frac{\rho_2}{s - \lambda_2} + \dots + \frac{\rho_n}{s - \lambda_n}\right)u$$
• Elección v.e.:

$$x_1 = \frac{1}{s - \lambda_1} u$$
 \dots $x_n = \frac{1}{s - \lambda_n} u$

$$x_1 \equiv \frac{1}{s - \lambda_1} u \cdots x_n = \frac{1}{s - \lambda_n} u$$
• Modelo de estado:
$$\dot{\mathbf{x}} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = [\begin{array}{cccc} \rho_1 & \rho_2 & \cdots & \rho_n \end{array}] \mathbf{x} + b_n u$$

P. Campoy

Control en el Espacio de Estado

Variables de estado de Jordan (2/2)

Sistema monovariable con polos multiples
$$y = \left(b_n + \frac{\rho_1}{(s-\lambda_1)^r} + \dots + \frac{\rho_{r-1}}{(s-\lambda_1)^2} + \frac{\rho_r}{s-\lambda_1} + \frac{\rho_{r+1}}{-\lambda_{r+1}} + \dots + \frac{\rho_n}{s-\lambda_n}\right)u$$

• Elección v.e.:
$$x_1 = \frac{1}{(s-\lambda_1)^r}u = \frac{1}{s-\lambda_1}x_2$$
 ... $x_{r-1} = \frac{1}{(s-\lambda_1)^2}u = \frac{1}{s-\lambda_1}x_r$ $x_r = \frac{1}{s-\lambda_1}u$

Modelo de estado

$$\mathbf{\dot{x}} = \begin{bmatrix}
\lambda_{1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \lambda_{1} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{1} & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 & \lambda_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \lambda_{n}
\end{bmatrix} \mathbf{x} + \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
1
\end{bmatrix} u$$

$$y = \begin{bmatrix} \rho_1 & \rho_2 & \cdots & \rho_{r-1} & \rho_r & \rho_{r+1} & \cdots & \rho_n \end{bmatrix} \mathbf{x} + b_n v$$

P. Campoy

Control en el Espacio de Estado

Comandos Matlab

- >eig(A)
- >pc=poly(A)
- >roots(pc)
- [T,J]=jordan(A)

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

31

Ejercicio 1.3

Dado el sistema de la figura, cuyo modelo de estado linealizado en torno a p.e. s1=0.3, A1=2, A2=1,5, s2=0.25 y F1=1 es:

$$\begin{bmatrix} \dot{h}_1 \\ \dot{h}_2 \end{bmatrix} = \begin{bmatrix} -0.441 & 0.441 \\ 0.588 & -1.078 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} \begin{bmatrix} f_1 \\ 0 \end{bmatrix}$$

- a) Hallar el modelo de estado en variables de Jordan (2 puntos)
- b) Hallar la matriz de cambio de base entre ambos modelos (2 puntos)
- c) Hallar el modelo de estado en variables de fase (2 puntos)
- d) Hallar la matriz de cambio de base entre el modelo en variables de fase y variables de Jordan. (2 puntos)
- e) Partiendo de los resultados anteriores calcular la matriz de cambio de base entre el modelo original y el modelo en variables de fase (2 puntos)

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

Ejercicio 1.3: solución

```
a) Hallar el modelo de estado en variables de Jordan (2 puntos)
   Hallar la matriz de cambio de base entre ambos modelos (2 puntos)
  >> A=[-0.441 0.441; 0.588 -1.078], B=[0.5; 0]
  >> [Tjo,J]=jordan(A)
                                                         J = -0.1589
                          T_{io} = 0.7651 \quad 0.2349
                                  0.4895 -0.4895
                                                               0
                                                                      -1.3601
c) Hallar el modelo de estado en variables de fase (2 puntos)
  >> Pca=poly(A)
                                           Pca = 1.0000 1.5190 0.2161
  >> Af=[0 1; -0.2161 -1.519], Bf=[0;1]
d) Hallar la matriz de cambio de base entre el modelo en variables de fase y variables de
     Jordan. (2 puntos)
 >>[Tjf,J]=jordan(Af)
                               Tjf = 1.1323 -0.1323
                                    -0.1799 0.1799
e) Partiendo de los resultados anteriores calcular la matriz de cambio de base entre el
    modelo original y el modelo en variables de fase (2 puntos)
  >> Tfo=inv(Tjf)*Tjo
                                     Tfo = 1.1250 -0.1250
                                             3.8460 -2.8460
  U.P.M.-DISAM
                 P. Campoy
                                   Control en el Espacio de Estado
                                                                                  34
```


Modelo de estado

- · Concepto de estado
- · Ecuaciones del modelo de estado
- · Representación gráfica de sistemas lineales
- · Transformaciones lineales del estado
- · Métodos de obtención modelos de estado
- F.d.T. y modelo de estado

M.-DISAM P. Campoy

Control en el Espacio de Estado

Relación entre la f.d.t. y el modelo de estado: obtención

• Matriz de funciones de transferencia, (sólo existe en sist. lineales invariantes):

y(s) = G(s)u(s)

representación externa del sistema: relación entrada-salida

Modelo de estado de sist. lineales invariantes:

 $\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t)$

representación interna del sistema: dinámica del estado

· Relación, tomando transformaddas de Laplace:

$$\mathbf{G}(\mathbf{s}) = \mathbf{C}[\mathbf{s}\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}$$

U.P.M.-DISAM

P. Campoy

Control en el Espacio de Estado

36

Relación entre la f.d.t. y el modelo de estado: conclusiones

$$G(s) = C[sI-A]^{-1}B+D$$

- Existe una única matriz G(s) para todas las matrices del modelo de estado de un sistema
- El polinomio característico es: P(s)= det[sl-A]
 - P(s)=0, polos del sistema son valores propios de A
 - G(s) tiene n polos determinados por la matriz A,
 excepto cancelaciones con algún cero del sistema
- Los ceros del sistema vienen determinados por las matrices A, B, C y D.

U.P.M.-DISAM

P. Campov

Control en el Espacio de Estado

