6. Coordenadas proyectivas

Para definir un sistema de coordenadas en el plano proyectivo, se podría pensar que bastaría dar una terna de puntos no alineados (tres rectas no coplanarias en \mathbb{R}^3), $\{a, b, c\}$. Tomando vectores representantes de las rectas, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, en \mathbb{R}^3 , tendríamos coordenadas (x_0, x_1, x_2) para cualquier vector \mathbf{x} que, en principio, podríamos asignar al punto correspondiente x en el proyectivo.

Sin embargo, existe cierta ambigüedad. Si decimos que la referencia proyectiva está formada por los puntos del proyectivo $\{a, b, c\}$, tendríamos infinidad de representantes vectoriales $\{\lambda \mathbf{a}, \mu \mathbf{b}, \nu \mathbf{c}\}$ en \mathbb{R}^3 y las coordenadas de x en las respectivas bases vectoriales serían distintas, $(x_0/\lambda, x_1/\mu, x_2/\nu)$. Y es claro, que, en general (x_0, x_1, x_2) y $(x_0/\lambda, x_1/\mu, x_2/\nu)$ no se pueden asociar al mismo punto x, ya que no son proporcionales, y por tanto no definen la misma recta vectorial.

Debemos, pues, encontrar una manera de fijar la base vectorial, dados los puntos proyectivos $\{a, b, c\}$.

Para ello, es preciso añadir un punto más a la referencia proyectiva, de modo que esta ambigüedad quede paliada. Si a, b, c son tres puntos no alineados del proyectivo (rectas vectoriales no coplanarias), añadimos un cuarto punto d, de manera que en $\{a, b, c; d\}$ no haya tres puntos alineados. A este punto lo denominaremos **punto unidad**, precisamente porque ayuda a solventar la ambigüedad en la elección de representantes vectoriales, escogiendo vectores de \mathbb{R}^3 que verifiquen

$$\mathbf{d} = \mathbf{a} + \mathbf{b} + \mathbf{c} . \tag{14}$$

Estos vectores son únicos, salvo un factor multiplicativo global (nótese que $\lambda \mathbf{a}, \lambda \mathbf{b}, \lambda \mathbf{c}, \lambda \mathbf{d}$, también verifican dicha condición), ya que, en el fondo, hallarlos es equivalente a encontrar las coordenadas de \mathbf{d} en la base $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ de \mathbb{R}^3 .

Así, si, una vez fijada la base vectorial, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, las coordenadas de \mathbf{x} son (x_0, x_1, x_2) , el punto x del proyectivo tendrá **coordenadas homogéneas** $(\lambda x_0, \lambda x_1, \lambda x_2)$, con cualquier $\lambda \neq 0$. Esta pequeña ambigüedad remanente no será molesta.

Un ejemplo más sencillo lo constituye la recta proyectiva. En una referencia $\{a, b; c\}$, un punto x de la recta tendrá coordenadas homogéneas $\lambda(x_0, x_1)$. Si $x_0 \neq 0$, podemos escoger λ de modo que las coordenadas del punto sean $(1, x_1)$ con lo cual, como hemos visto, podemos identificar x con el punto

 x_1 de la recta afín. Sólo queda fuera el único punto de coordenadas $(0, \lambda)$. Este es el único punto adicional que presenta la recta proyectiva frente a la recta afín, así que podemos considerarlo el punto del infinito de esta. La recta proyectiva es, pues, una circunferencia cerrada por dicho punto.

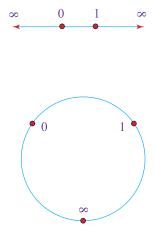


Figura 10: La recta proyectiva como circunferencia

Obviamente, las coordenadas homogéneas de a, b, c, en la referencia que definen son, respectivamente, (1,0), (0,1), (1,1), salvo factor multiplicativo.