8. Interpolación y aproximación

Las curvas racionales aportan muchos grados de libertad adicionales a las curvas de Bézier, que podremos emplear para mejorar las soluciones de los problemas de interpolación y aproximación.

Podemos ver el problema racional como un problema polinómico en \mathbb{R}^3 en el que los datos son los valores $\mathbf{c}(t_i) = \mathbf{a_i}, i = 0, ..., m$, donde $\mathbf{a}_i = (v_i, v_i a_i)$. Como los datos del problema son de la forma $c(t_i) = a_i$, quedan como parámetros libres los pesos de los puntos dato, v_i , i = 0, ..., m.

No existen algoritmos generales para determinar dichos pesos, así que deberemos considerarlos grados de libertad en el diseño, que nos permitirán mejorar las propiedades de la curva resultante. Ejemplo.