Problemas de Ecuaciones Diferenciales Ordinarias

Transformada de Laplace y de Fourier

- 1. Hallar la tranformada de Laplace de la función característica del intervalo $[a,b], \chi_{[a,b]}(t) = 1$ si $t \in [a,b], \chi_{[a,b]}(t) = 0$ si $t \notin [a,b]$.
- 2. Calcular la transformada de Laplace de las funciones $f(t) = \sinh at$, $g(t) = \cosh at$.
- 3. Demostrar que si la transformada de Laplace de la función f(t) es F(s), entonces la transformada de la función g(t) = f(at), a > 0, es G(s) = F(s/a)/a.
- 4. Calcular la transformada de la función $f(t) = \int_0^t t \sin t \, dt$.
- 5. Calcular la transformada de la función $f(t) = (e^{-t} e^{-2t})/t$.
- 6. Obtener la transformada de Laplace de la función $h(t) = te^t \sin t$.
- 7. Calcular la transformada de Laplace de la función f que toma valores f(t) = t para t < 1 y f(t) = 2t + 1 para $t \ge 1$. Calcular la transformada de f'(t).
- 8. Calcular la transformada de Laplace de la función $f(t) = \ln t$, sabiendo que la integral $\int_0^\infty e^{-x} \ln x \, dx = -\gamma$, siendo γ la constante llamada gamma de Euler. ¿Y la de $g(t) = t \ln t$?
- 9. Calcular la transformada de Laplace de la función $f(t) = |\sin t|$.
- 10. Hallar la transformada de Laplace de $f(t) = \int_0^t \frac{\sin^2 t}{t} dt$.
- 11. ¿De qué función es transformada de Laplace $F(s) = 1/(s^2 + 1)^2$?
- 12. Hallar la transformada inversa de Laplace de $F(s) = 1/(s^4 1)$.
- 13. Resolver el problema de valores iniciales $x''' + x' = e^t \operatorname{con} x(0) = x'(0) = x''(0) = 0$.
- 14. Resolver el problema de valores iniciales x'' + 2x' + 5x = f(t), x(0) = 0, x'(0) = 1, donde f(t) = 1 para $t \in [1, 2)$ y f(t) = 0 para $t \notin [1, 2)$.
- 15. Resolver el problema de valores iniciales, x'' + x' = f(t), f(t) = t + 1 para $t \in [0, 1]$, f(t) = 3 t, $t \ge 1$, con x(0) = -1, x'(0) = 0.
- 16. Hallar la solución general de la ecuación x'' 2x' + 2x = f(t), donde f(t) = 0 para $t \in [0, \pi)$ y f(t) = 1 para $t \geq \pi$. Resolver el problema de valores iniciales con x(0) = 1, x'(0) = 1.
- 17. Hallar la solución general de la ecuación $x''' 7x'' + 15x' 9x = e^{2t}$. Hallar la solución que verifica x(0) = x'(0) = x''(0) = 0. Resolver el apartado anterior por transformada de Laplace.
- 18. Hallar la solución general de la ecuación $x'' 2x' + 5x = 16te^{-t}$. Hallar la solución que verifica x(0) = 0, x'(0) = 0 a partir de la solución general y también por transformación de Laplace.

- 19. Consideremos la ecuación x'' 6x' + 9x = f(t). Obtener la solución general de la ecuación para $f(t) = e^{3t}$. Obtener la solución del problema de valores iniciales para x(0) = 0, x'(0) = 0. Resolver el apartado anterior por transformada de Laplace. Obtener la función de transferencia del problema (transformada $X_I(s)$ de la solución del problema $x'' 6x' + 9x = \delta(t)$, x(0) = 0, x'(0) = 0. Resolver el problema del apartado 2 como convolución con la respuesta al impulso $x_I(t)$.
- 20. Resolver el sistema x' = 2y + 3, y' = 2x 2t con condiciones iniciales x(0) = 0 = y(0).
- 21. Sea el problema de valores iniciales dado por la ecuación $x'' 2x' + x = t^2 e^t$ y las condiciones iniciales x(0) = 0, x'(0) = 0. Obtener la solución general de la ecuación. Obtener la solución del problema de valores iniciales directamente y por transformada de Laplace. Expresar la ecuación como un sistema lineal de primer orden y resolver el correspondiente sistema homogéneo.
- 22. Resolver el sistema $x' = 2x + 3y + 3e^{2t}$, y' = -x 2y. Hallar la solución que verifica x(0) = 0, y(0) = 0.
- 23. Resolver el sistema x' = x + y + 2, y' = -x y. Hallar la solución que verifica x(0) = 0, y(0) = 0.
- 24. Consideremos el sistema x' = x 9y, $y' = x + y e^t$. Resolver el sistema. Hallar la solución del sistema que verifica x(0) = 0, y(0) = 0, a partir de la solución general. Resolver el apartado anterior por transformada de Laplace.
- 25. Consideremos el sistema formado por las ecuaciones $x' = -3x + 2y + 2e^t$, $y' = -4x + 3y + 2e^t$. Obtener la solución general del sistema. Obtener la solución que verifica x(0) = 0, y(0) = 0. Obtener la solución del anterior problema de valores iniciales por transformada de Laplace.
- 26. Hallar la solución general del sistema x' = -x y, $y' = 4x + 3y 2e^t$. Hallar la solución del problema de valores iniciales correspondiente al sistema anterior con las condiciones x(0) = 0, y(0) = 0. Hallar la solución del problema anterior por transformada de Laplace.
- 27. Resolver el sistema $x' = -y + 1 \theta(t \pi)$, $y' = x + 1 \theta(t \pi)$ con condiciones iniciales x(0) = 0, y(0) = 0.
- 28. Resolver el problema de valores iniciales $x'' + x = \delta(t \pi)$ con x(0) = 0, x'(0) = 0. Lo mismo para x(0) = 0, x'(0) = 1.
- 29. Resolver el problema de valores iniciales $x'' + 2x' + 2x = \delta(t \pi)$ con x(0) = 1, x'(0) = 0.
- 30. Hallar la solución general de la ecuación tx'' + x' = 0 directamente y por transformada de Laplace. Comparar los resultados e interpretarlos.
- 31. Hallar la solución general de la ecuación tx'' + (t-1)x' x = 0.
- 32. Resolver la ecuación integral $x(t) = t^3 + \int_0^t \sin(t-u)x(u) du$ para x(t).

33. Hallar las transformadas de Fourier de las siguientes funciones de variable real:

$$33.1 \ \chi_{[a,b]}(t) = \begin{cases} 0 & t \notin [a,b] \\ 1 & t \in [a,b] \end{cases} \text{ b) } g(t) = \begin{cases} 0 & t < 0 \\ e^{-at} & t \ge 0 \end{cases}, \quad a > 0.$$

$$c) \ h(t) = \frac{1}{t^2 + a^2}. \ d) \ j(t) = e^{-t^2/2}. \ e) \ m(t) = \frac{t}{t^2 + a^2}.$$

34. Hallar la transformada de Fourier de la función $f(t)=e^{-a|t|},\,a>0.$ Usar el resultado para calcular la transformada de las funciones $g(t)=te^{-a|t|},\,h(t)=\mathrm{signo}\,(t)e^{-a|t|},\,j(t)=|t|e^{-a|t|}.$