Ecuaciones de primer orden en derivadas parciales

Leonardo Fernández

Matemática Aplicada, ETSI Navales, Universidad Politécnica de Madrid

1. Ecuaciones cuasilineales de primer orden

Notación: $u_x := \frac{\partial u}{\partial x}, \quad u_{xx} := \frac{\partial^2 u}{\partial x^2}, \quad u_{xy} := \frac{\partial^2 u}{\partial x \partial y}, \dots$

Ecuación cuasilineal de primer orden para u(x,y): $a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u)$.

Sistema característico: $\dot{x}=a,\ \dot{y}=b,\ \dot{z}=c$ para curvas características de soluciones de la ecuación. **Proyecciones características**: Curvas planas que verifican $\dot{x}=a,\ \dot{y}=b$ si a,b no dependen de u.

2. Problema de valores iniciales

Teorema: Sea la ecuación $a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u)$. El P.V.I. a lo largo de una curva Γ tiene solución unica en un entorno de Γ si a,b,c son funciones de clase C^1 y $\begin{vmatrix} a(f(s),g(s),h(s)) & f'(s) \\ b(f(s),g(s),h(s)) & g'(s) \end{vmatrix} \neq 0$, donde $\gamma(s)=\left(f(s),g(s),h(s)\right)$ es una parametrización del dato inicial (u(f(s),g(s))=h(s)).

Resolución: Resolver $\dot{x}=a,\ \dot{y}=b,\ \dot{z}=c$ con condiciones iniciales $x(s,0)=f(s),\ y(s,0)=g(s),\ z(s,0)=h(s)$. Es una solución en forma paramétrica $u\big(x(s,\tau),y(s,\tau)\big)=z(s,\tau)$. Si h es arbitraria, proporciona una solución general de la ecuación.

3. Solución general

Ecuación cuasilineal: Resolver $\frac{dx}{a} = \frac{dy}{b} = \frac{du}{c}$ con dos constantes, $F(x,y,u) = C_1$, $G(x,y,u) = C_2$. La solución general se puede escribir de varias maneras: $F(x,y,u) = f\left(G(x,y,u)\right), \qquad G(x,y,u) = g\left(F(x,y,u)\right), \qquad h\left(F(x,y,u),G(x,y,u)\right) = 0.$

Ecuación lineal: $a(x,y)u_x + b(x,y)u_y = c(x,y,u)$ tiene características F(x,y) = K, solución de $\frac{dy}{dx} = \frac{b}{a}$. Con el cambio U(x,y) = x, V(x,y) = F(x,y), la ecuación se reduce a ordinaria $au_U = c$ (forma normal). Con el cambio U(x,y) = y, V(x,y) = F(x,y), la ecuación se reduce a ordinaria $bu_U = c$ (forma normal).