# Introduction to Symbolic Computation for Engineers 

Juana Sendra, Sonia Rueda
(Universidad Politécnica de Madrid)

- Let $\mathcal{P}$ be the problem that we want to solve
- Let $\mathcal{A}$ be an algorithm used to solve $\mathcal{P}$
- $\mathcal{I}_{\mathcal{A}}=\{$ inputs of $\mathcal{A}\}$

We define the computing time function as:

$$
\begin{aligned}
t_{\mathcal{A}}: \mathcal{I}_{\mathcal{A}} & \longrightarrow \mathbb{R} \\
x & \longrightarrow t_{\mathcal{A}}(x)
\end{aligned}
$$

where $t_{\mathcal{A}}(x)$ represents the number of basic steps needed for executing the algorithm $\mathcal{A}$ to obtain the output $\mathcal{A}(x)$.

- In general, computing the function $t_{\mathcal{A}}$ is not easy. For this reason we deal with simpler functions.


## Complexity Functions

We consider a partition of the set of inputs of the algorithm:

$$
\mathcal{I}_{\mathcal{A}}=\bigcup_{j \in J} \mathcal{I}_{\mathcal{A}}(j)
$$

where

- $\mathcal{I}_{\mathcal{A}}(j)$ is a finite set.
- $\mathcal{I}_{\mathcal{A}}(j) \cap \mathcal{I}_{\mathcal{A}}(k)=\emptyset$ if $j \neq k$.


## Definition:

- Maximum Computing Time Function

$$
\begin{aligned}
t_{\mathcal{A}}^{+}: J & \longrightarrow \mathbb{R} \\
j & \longrightarrow t_{\mathcal{A}}^{+}(j)=\max \left\{t_{\mathcal{A}}(x) \mid x \in \mathcal{I}_{\mathcal{A}}(j)\right\}
\end{aligned}
$$

- Minimum Computing Time Function

$$
\begin{aligned}
t_{\mathcal{A}}^{-}: J & \longrightarrow \mathbb{R} \\
j & \longrightarrow t_{\mathcal{A}}^{-}(j)=\min \left\{t_{\mathcal{A}}(x) \mid x \in \mathcal{I}_{\mathcal{A}}(j)\right\}
\end{aligned}
$$

- Average Computing Time Function

$$
\begin{aligned}
t_{\mathcal{A}}^{*}: J & \longrightarrow \mathbb{R} \\
j & \longrightarrow t_{\mathcal{A}}^{*}(j)=\sum_{x \in \mathcal{I}_{\mathcal{A}}(j)} p(x) t_{\mathcal{A}}(x)
\end{aligned}
$$

where $p(x)$ is the probability of $x$.

## Remarks:

- These functions depend on the partition.
- In general we analyze $t_{\mathcal{A}}^{+}$.


## Comparing complexities

Given two algorithms $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ to solve the same problem $\mathcal{P}$ we want to compare their complexity functions $t_{\mathcal{A}_{1}}^{+}$and $t_{\mathcal{A}_{2}}^{+}$.
For this purpose we introduce the following notions.
DEFINITION: Let $S$ be a set and $f, g: S \longrightarrow \mathbb{R}$.

- $f \preceq g(g$ dominates $f$ ) (or $f$ is of order $g$ ) if

$$
\exists c \in \mathbb{R}^{+} / \forall x \in S|f(x)| \leq c|g(x)| .
$$

- $f \sim g(g$ and $f$ are codominant) $f \preceq g$ and $g \preceq f$.


## REMARKS:

- $f \preceq g$ can be denoted as $f=\mathcal{O}(g)$.
- If $0 \leq f \leq g$ then $f \preceq g$.

