Introduction to Symbolic Computation for Engineers

Juana Sendra, Sonia Rueda

(Universidad Politécnica de Madrid)

3.-INTRODUCTION TO THE COMPLEXITY OF ALGORITHMS.

- Let *P* be the problem that we want to solve
- Let \mathcal{A} be an algorithm used to solve \mathcal{P}
- $\mathcal{I}_{\mathcal{A}} = \{ \text{ inputs of } \mathcal{A} \}$

We define the COMPUTING TIME FUNCTION as:

where $t_{\mathcal{A}}(x)$ represents the number of basic steps needed for executing the algorithm \mathcal{A} to obtain the output $\mathcal{A}(x)$.

In general, computing the function t_A is not easy. For this reason we deal with simpler functions.

Complexity Functions

We consider a partition of the set of inputs of the algorithm:

$$\mathcal{I}_{\mathcal{A}} = igcup_{j \in J} \mathcal{I}_{\mathcal{A}}(j)$$

where

- $\mathcal{I}_{\mathcal{A}}(j)$ is a finite set.
- $\mathcal{I}_{\mathcal{A}}(j) \cap \mathcal{I}_{\mathcal{A}}(k) = \emptyset$ if $j \neq k$.

Definition:

Maximum Computing Time Function

$$egin{array}{rl} t^+_{\mathcal{A}}\colon J &\longrightarrow \,\mathrm{I\!R} \ & \ j &\longrightarrow \,t^+_{\mathcal{A}}(j) = max\{t_{\mathcal{A}}(x)\,|\,x\in\mathcal{I}_{\mathcal{A}}(j)\} \end{array}$$

Minimum Computing Time Function

$$t_{\mathcal{A}}^- \colon J \longrightarrow \mathrm{I\!R}$$

 $j \longrightarrow t_{\mathcal{A}}^-(j) = min\{t_{\mathcal{A}}(x) \,|\, x \in \mathcal{I}_{\mathcal{A}}(j)\}$

Average Computing Time Function

$$egin{array}{rll} t^*_{\mathcal{A}}: \ J & \longrightarrow \ \mathrm{I\!R} \ & \ j & \longrightarrow \ t^*_{\mathcal{A}}(j) = \sum_{x \in \mathcal{I}_{\mathcal{A}}(j)} \ p(x) t_{\mathcal{A}}(x) \end{array}$$

where p(x) is the probability of x.

Remarks:

- These functions depend on the partition.
- In general we analyze $t_{\mathcal{A}}^+$.

Comparing complexities

Given two algorithms \mathcal{A}_1 and \mathcal{A}_2 to solve the same problem \mathcal{P} we want to compare their complexity functions $t^+_{\mathcal{A}_1}$ and $t^+_{\mathcal{A}_2}$.

For this purpose we introduce the following notions.

<u>DEFINITION</u>: Let S be a set and $f, g : S \longrightarrow \mathbb{R}$.

• $f \preceq g$ (g dominates f) (or f is of order g) if

 $\exists \; c \in \mathrm{I\!R}^+ \; / \; orall \; x \in S \; |f(x)| \leq c |g(x)|.$

• $f \sim g$ (g and f are codominant) $f \preceq g$ and $g \preceq f$. REMARKS:

- $f \preceq g$ can be denoted as $f = \mathcal{O}(g)$.
- If $0 \leq f \leq g$ then $f \preceq g$.