LAB # 1

(OVERVIEW OF THE COMPUTATIONAL SYSTEM MAPLE)

- 1. This exercise focuses on the manipulation of prime numbers and using Maple's help system. Answer the following questions:
 - 1.1. Obtain a 12 digit integer generated randomly.
 - 1.2. Decide, without factorizing, whether a is prime.
 - 1.3. Factorize a.
 - 1.4. Repeat exercises 3.2 and 3.3 for fifty numbers, obtained randomly.
 - 1.5. Obtain the primes which are anterior and posterior to the number 123456789.
 - 1.6. Calculate the thousand-th prime number.
- 2. 2.1. Compute the g.c.d. of $2^{30} 1, 31!, 4^{14} 1$.
 - 2.2. Obtain the coefficient of x^{20} in the polynomial $f(x, y, z) = (5x^2y + y^2 + 12xz)^{20}$.
 - 2.3. Obtain all the coefficients of the above mentioned polynomial in the variables $\{x, y\}$.
 - 2.4. Calculate the g.c.d. of the coefficients of the polynomial $f(x) = 12x^3 + 120978x^2 + 1249875000x + 12300$.
- 3. 3.1. Calculate the g.c.d. over \mathbb{Q} of the polynomials $f_1(x) = x^4 2x^2 9x + 10$, $f_2(x) = x^4 3x^3 8x^2 15x + 25$, $f_3(x) = x^4 2x^3 6x^2 13x + 20$.
 - 3.2. Factorize the previous polynomials of over \mathbb{Q}
 - 3.3. Calculate the g.c.d. over \mathbb{Q} of the coefficients of the polynomial $f(x, y, z) = 79x^2yt + 56xy^2z + 49x^2y^3 + 63x^2y^2z + 57x^2z^3 59y^2z^3$ in the variable z.
- 4. Matrix manipulation.
 - 4.1. Built a 3 × 6 matrix $A = (a_{i,j})$ where $a_{i,j} = \frac{i}{i+j}$.
 - 4.2. Built a 4 × 4 matrix $C = (c_{i,j})$ where $c_{i,j} = max\{i, j\}$.
 - 4.3. Built a 4×4 matrix $D = (d_{i,j})$ where $d_{i,j}$ is the (i+j)-th prime number.
 - 4.4. Compute $C + D, C \cdot D, 5C + \frac{3}{2}D, C^{-1}, D^{-5}, C^3$ and $(x^2 + 1) \cdot C$.
 - 4.5. Compute the determinant of C and D. Compute the rank of A and B.
 - 4.6. Obtain the formula of the determinant of a 4×4 matrix.
- 5. Let us consider

$$f(x) = \frac{3x^2 - 2x + \sqrt{5}}{4x^2 + 3\sqrt{2}x - 0.66}$$

Answer the following questions:

- 5.1. Evaluate f(x) for $x = 1, 10, ..., 10^9$.
- 5.2. Represent f graphically.
- 5.3. Calculate the limit of f(x) when x tends to ∞ .
- 6. Let us consider $f(x) = \frac{senx}{x}$. Answer the following questions:

- 6.1. Calculate f'(x).
- 6.2. Calculate $f^{v}(x)$:
- 6.3. Obtain $f^{100}(\pi)$.
- 6.4. Obtain the 15 first digits of the value obtained in 6.3.
- 6.5. Check by integration that the result obtained in 6.2 is correct.
- 7. Given the plane curve, in polar coordinates, $r = 1 + a\cos(\theta)$, represent it graphically for $a = 1, 2, 3, 4, \frac{1}{2}$.
- 8. Represent the level curves of the function $f(x, y) = x^2 x^4 y^2$.
- 9. Simplify the following expressions:
 - 9.1. $(x-y)^3 + 3(x-y)(x+y) + (x+y)^3 + 3(x-y)(x+y)^2 8x^3 + 3(x-y)(x-1-y)(x+y)$ 9.2. $\frac{x^{100}-1}{x-1} + \sum_{i=0}^{99} x^i$ 9.3. $\frac{3}{\cos^2 x} - \frac{2}{\cos^6 x} + \frac{3\sin^2 x}{\cos^6 x} - tg^6 x$
 - 9.4. Let us consider $f = x^3y^2 + z, g = 4x^5y^2 + z^3 + 1, h = 2x^3y^4 + 7z^3$. Simplify $\frac{(f+g)^2 + h^3}{f+g+h}$.