LAB \# 1

(OVERVIEW OF THE COMPUTATIONAL SYSTEM MAPLE)

1. This exercise focuses on the manipulation of prime numbers and using Maple's help system. Answer the following questions:
1.1. Obtain a 12 digit integer generated randomly.
1.2. Decide, without factorizing, whether a is prime.
1.3. Factorize a.
1.4. Repeat exercises 3.2 and 3.3 for fifty numbers, obtained randomly.
1.5. Obtain the primes which are anterior and posterior to the number 123456789.
1.6. Calculate the thousand-th prime number.
2. 2.1. Compute the g.c.d. of $2^{30}-1,31$!, $4^{14}-1$.
2.2. Obtain the coefficient of x^{20} in the polynomial $f(x, y, z)=\left(5 x^{2} y+y^{2}+12 x z\right)^{20}$.
2.3. Obtain all the coefficients of the above mentioned polynomial in the variables $\{x, y\}$.
2.4. Calculate the g.c.d. of the coefficients of the polynomial $f(x)=12 x^{3}+120978 x^{2}+$ $1249875000 x+12300$.
3. 3.1. Calculate the g.c.d. over \mathbb{Q} of the polynomials $f_{1}(x)=x^{4}-2 x^{2}-9 x+10, f_{2}(x)=x^{4}-$ $3 x^{3}-8 x^{2}-15 x+25, f_{3}(x)=x^{4}-2 x^{3}-6 x^{2}-13 x+20$.
3.2. Factorize the previous polynomials of over \mathbb{Q}
3.3. Calculate the g.c.d. over \mathbb{Q} of the coefficients of the polynomial $f(x, y, z)=79 x^{2} y t+$ $56 x y^{2} z+49 x^{2} y^{3}+63 x^{2} y^{2} z+57 x^{2} z^{3}-59 y^{2} z^{3}$ in the variable z.
4. Matrix manipulation.
4.1. Built a 3×6 matrix $A=\left(a_{i, j}\right)$ where $a_{i, j}=\frac{i}{i+j}$.
4.2. Built a 4×4 matrix $C=\left(c_{i, j}\right)$ where $c_{i, j}=\max \{i, j\}$.
4.3. Built a 4×4 matrix $D=\left(d_{i, j}\right)$ where $d_{i, j}$ is the $(i+j)$-th prime number.
4.4. Compute $C+D, C \cdot D, 5 C+\frac{3}{2} D, C^{-1}, D^{-5}, C^{3}$ and $\left(x^{2}+1\right) \cdot C$.
4.5. Compute the determinant of C and D. Compute the rank of A and B.
4.6. Obtain the formula of the determinant of a 4×4 matrix.
5. Let us consider

$$
f(x)=\frac{3 x^{2}-2 x+\sqrt{5}}{4 x^{2}+3 \sqrt{2} x-0.66}
$$

Answer the following questions:
5.1. Evaluate $f(x)$ for $x=1,10, \ldots, 10^{9}$.
5.2. Represent f graphically.
5.3. Calculate the limit of $f(x)$ when x tends to ∞.
6. Let us consider $f(x)=\frac{\operatorname{sen} x}{x}$. Answer the following questions:
6.1. Calculate $f^{\prime}(x)$.
6.2. Calculate $f^{v)}(x)$:
6.3. Obtain $f^{100)}(\pi)$.
6.4. Obtain the 15 first digits of the value obtained in 6.3 .
6.5. Check by integration that the result obtained in 6.2 is correct.
7. Given the plane curve, in polar coordinates, $r=1+a \cos (\theta)$, represent it graphically for $a=$ $1,2,3,4, \frac{1}{2}$.
8. Represent the level curves of the function $f(x, y)=x^{2}-x^{4}-y^{2}$.
9. Simplify the following expressions:
9.1. $(x-y)^{3}+3(x-y)(x+y)+(x+y)^{3}+3(x-y)(x+y)^{2}-8 x^{3}+3(x-y)(x-1-y)(x+y)$
9.2. $\frac{x^{100}-1}{x-1}+\sum_{i=0}^{99} x^{i}$
9.3. $\frac{3}{\cos ^{2} x}-\frac{2}{\cos ^{6} x}+\frac{3 \operatorname{sen}^{2} x}{\cos ^{6} x}-t g^{6} x$
9.4. Let us consider $f=x^{3} y^{2}+z, g=4 x^{5} y^{2}+z^{3}+1, h=2 x^{3} y^{4}+7 z^{3}$. Simplify $\frac{(f+g)^{2}+h^{3}}{f+g+h}$.

