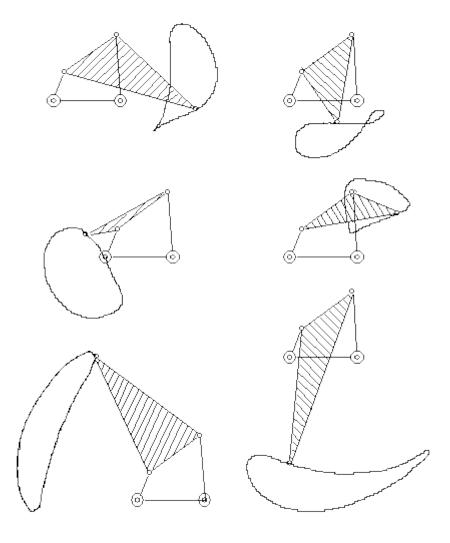
Synthesis of trajectories

Autores: José Antonio Lozano Ruiz, Christoph Wirth

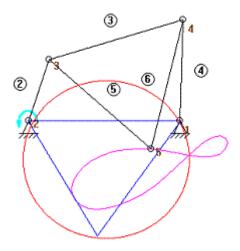
Part of the synthesis of mechanisms that studies if the trajectories described by points pertaining to the bars of a mechanism, during the movement of this one, fit with other specified trajectories. Depending on the requirements the following problems can be considered:

- Generation of trajectory exactly. trajectory Generation of approximately a - That a point of a bar passes, during the motion of the mechanism, by a fixed number of precision points belonging given to - Generation of special trajectories, such as trajectories with double points, points of backward movement, symmetrical respect to an axis, with almost circular sections, almost rectilinear sections...;
- 1. Study of the trajectory of coupler of the four bars mechanism

Kinds of trajectories of four bars mechanism.



Circumference of focus



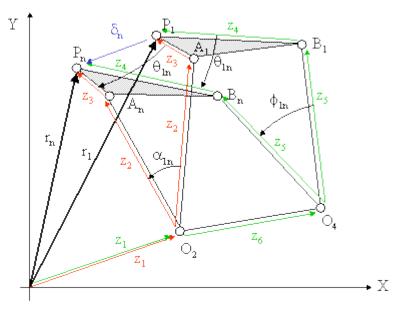
2. Generation of trajectories with three precision points by means of the complex numbers method

Considering two positions 1 and n of the mechanism, the position vectors of a coupler point by two ways can be defined:

$$\begin{array}{l} r_1 = z_1 \ + z_2 \ + z_3 \\ r_1 = z_1 \ + z_6 \ + z_5 \ + z_4 \\ r_n = z_1 \ + z_2 eia1n + z_3 eiq1n \\ r_n = z_1 \ + z_6 \ + z_5 eif1n + z_4 eiq1n \end{array}$$

The position of point n respect to point 1, can be defined by the vectors:

$$\begin{array}{l} \delta_n \, = r_n \, - r_1 \\ \delta_n \, = z_2(e^{i\alpha ln} \, - 1) + z_3(e^{i\theta ln} \, - 1) \\ \delta_n \, = z_5(e^{i\Phi ln} \, - 1) + z_4(e^{i\theta ln} \, - 1) \end{array}$$



Having three points 1, 2 and 3 by where it is desired that the coupler point of the mechanism passes, from point 1 to 2 and from point 1 to 3, the following vectors can be defined:

$$\begin{array}{lll} \delta_2 &= z_2(e^{i\alpha 12} - 1) + z_3(e^{i\theta 12} - 1) \\ \delta_3 &= z_2(e^{i\alpha 13} - 1) + z_3(e^{i\theta 13} - 1) \\ \delta_2 &= z_5(e^{i\Phi 12} - 1) + z_4(e^{i\theta 12} - 1) \\ \delta_3 &= z_5(e^{i\Phi 13} - 1) + z_4(e^{i\theta 13} - 1) \end{array}$$

The previous system of 4 equations with 4 unknowns allows to calculate the dimensions of the four bars mechanism and the coupler point which passes through the three specified points 1, 2 and 3:

$$\begin{array}{c} \delta_2 = z_2(e^{i\,\alpha 12}-1) + z_3(e^{i\theta\,12}-1) \\ \delta_3 = z_2(e^{i\,\alpha 13}-1) + z_3(e^{i\theta\,13}-1) \end{array} \\ \begin{array}{c} z_2\,, z_3 \\ z_1 = r_1 - z_2 - z_3 \end{array} \\ \begin{array}{c} \delta_2 = z_5(e^{i\,\phi 12}-1) + z_4(e^{i\theta 12}-1) \\ \delta_3 = z_5(e^{i\,\phi 13}-1) + z_4(e^{i\theta 13}-1) \end{array} \\ \begin{array}{c} z_4\,, z_5 \\ z_6 = r_1 + z_1 - z_5 - z_4 \end{array} \\ \end{array}$$

Go to Exercise 2