Exercise 1.10:

a) Graphic analysis of a double crank (anti-parallel)	b) Analysis using the PC-Program SAM 6.0
Please make a sketch on a sheet of paper (DIN A4) with the given coordinates: $\mathrm{A}_{\mathrm{o}}(0 / 50)$ A (15/65) B $(15 / 35)$ $\mathrm{B}_{0}(30 / 50)$ Start in the given position and show the positions of the mechanism every 45°-step. Discuss the movement of the coupler AB.	Create the anti-parallel double crank with the given coordinates (s. left). Use the Input motion: Motion 360 [deg] Time 0.1 [s] Intervals 300 [-] For the given $\mathbf{n}=\mathbf{1 0} \mathbf{s}^{-1}$, the time $\mathrm{T}=1 / \mathrm{n}=0.1 \mathrm{~s}$) Now calculate with the Abacus icon, Node Data click on point B Absolute: $\sqrt{ }$ Velocity and animate the mechanism using the Windmill icon. Show the coupler curve of the points B using: Display and Path. Then show the Hodograph by using: Display and Hodograph. Look at the Graph of Selected items. Find the minimum point of velocity and the value of $\left\|v_{\mathrm{B}, \text { min }}\right\|$ in $[\mathrm{mm} / \mathrm{s}]$. Discuss the graph of velocity v_{B}.

