## Exercise 1.11:



Analysis of the velocities of a crank-and-rocker using the PC-Program SAM 6.0 Create the crank-and-rocker with the given coordinates.
$\mathrm{A}_{0}(0 / 0)$
A (40/0)
B (130/0)
Bo (90/-100)
Use the Input motion:
Motion 360 [deg]
Time 0.25 [s]
Intervals 36 [-]
For the given $\mathbf{n}=\mathbf{4} \mathbf{s}^{-1}$, the time $\mathrm{T}=1 / \mathrm{n}=0.25 \mathrm{~s}$ )
Now calculate with the Abacus icon, Node Data click on points B Absolute: $\sqrt{ }$ Velocity and animate the mechanism using the Windmill icon. Show the coupler curve of the point B using: Display and Path. Then show the Hodograph using: Display and Hodograph.
Look at the Graph of Selected items.
Find the maximum point of velocity an the value of $\left|\mathrm{v}_{\mathrm{B}, \text { max }}\right|$ in $[\mathrm{m} / \mathrm{s}]$.

