Exercise 1.7:

- a) Graphic analysis of the velocity of a crank-and-rocker
- b) Analysis using the PC-Program SAM 6.0

a) Graphic analysis of a	b) Analysis using the
6-link mechanism	PC-Program SAM 6.0
Please make a sketch on a sheet of paper	Create the crank-and-rocker with the
(DIN A4) with the given coordinates in	given coordinates (s. left). Use the
mm:	Input motion:
A _o (0/0)	Motion 360 [deg]
A (-30/30)	Time 0.1 [s]
B (90/10)	Intervals 36 [-]
B _o (100/-80)	(Time T means the time for one
For $n = 10 \text{ s}^{-1}$ is $\omega = 2\pi n = 62.83 \text{ s}^{-1}$	revolution. So for the given
Velocity is given by	$n = 10 \text{ s}^{-1}$, the time
$v_A = \omega r = 62.83 s^{-1}x 42,4 mm = 2665.7$	T = 1/n = 0.1 s)
mm/s	Now calculate with the Abacus
$v_{\rm A} = 2.7 {\rm m/s}$	icon, Node Data click to points A
Now take the length of v_A^{γ} equal to the	and B Absolute: $\sqrt{Velocity}$ and let
length of the crank A _o A.	the mechanism move by using the
Your scale for velocities is:	Windmill icon. Show the coupler
$1 \text{cm} \equiv 0.64 \text{ m/s}$	curve of the points A and B by
Now find the vector of the rotated velocity	using: Display and Path . Then show
$v_{B^{\gamma}}$ and its value by using the parallel line.	the Hodograph by using: Display
	and Hodograph. Look at the Graph
What is the Result in [m/s]?	of Selected items