Exercise 1.8:

Analysis of the acceleration of a slider crank using PC-Program SAM 6.0
Create the slider crank with the given coordinates in mm :
$\mathrm{A}_{\mathrm{o}}(0 / 0), \mathrm{A}(0 / 30), \mathrm{B}(75 /-20)$
Given: $\mathbf{n}=10 \mathbf{s}^{-1}(\mathrm{n}=600 \mathrm{rpm})$; (Time T for one revolution: $\left.T=1 / \mathrm{n}=0.1 \mathrm{~s}\right)$
Input motion:
Motion 360 [deg]
Time 0.1 [s]
Intervals 36 [-]
Abacus
Node Data, click on joint B
Absolute: $\sqrt{ }$ Velocity $\sqrt{ }$ Acceleration
Look at the Graph of Selected items
Find the maximum point of acceleration.
What is the Result of $\left|a_{B, a b s}\right|$ in $\left[\mathrm{m} / \mathrm{s}^{2}\right]$?

