Exercise 1.9:

a) Graphic analysis of a double crank	b) Analysis using the PC-Program SAM 6.0
Please make a sketch on a	Create the double crank with the given
sheet of paper	coordinates (s. left). Use the Input motion :
(DIN A4) with the given	Motion 360 [deg]
coordinates:	Time 0.1 [s]
	Intervals 36 [-]
$A_{o}(0/0)$	For the given n = 10 s ⁻¹ , the time $T = 1/n = 0.1 s$)
A (60/-10)	Now calculate with the Abacus icon, Node Data
B (110/0)	click to points A Absolute: $\sqrt{Velocity}$ and let
$B_{o}(30/0)$	the mechanism move by using the Windmill
	icon. Show the coupler curve of the points A by
Start in the given position	using: Display and Path. Then show the
and show the positions of the	Hodograph by using: Display and Hodograph.
mechanism at 45 degree	Look at the Graph of Selected items.
steps.	
Discuss the movement of the	Find the maximum point of velocity and the
coupler AB.	value of $ v_{A,abs} $ in $[m/s]$.
	Discuss the movement of the coupler.