EXERCICE 1

Design of the steering system of an automobile, as it is shown in the figure.

Figure E1.1.- Design of the steering system of an automobile.

Solution:

a) First requirements:

- Frontal steering system.
- Null yaw tyre angles .
b) Kinematic requirements:
- As figure E.2. shows, the correct motion of the car forces to $\delta \mathrm{i} \neq \delta \mathrm{e}$.

The ratio between δi and δe is the known "Proportion of Akerman":

$$
\operatorname{Cot}\left(\delta_{\mathrm{i}}\right)-\operatorname{Cot}\left(\delta_{\mathrm{e}}\right)=\frac{\mathrm{b}}{\mathrm{~L}}
$$

(ec.E1.1)
Where "b" is the wheel track of the car, and "L" is the wheelbase.
For an average car:

$$
\mathrm{b}=1,74 \mathrm{~m} . ; \mathrm{L}=3,67 \mathrm{~m} .
$$

Therefore:
$\operatorname{Cot}(\delta \mathrm{i})-\operatorname{Cot}(\delta \mathrm{e})=0,47411$ (ec.E1.2)

Figure E1.2.- Kinematic requirement for the right operation of the steering system.
c) Precision points.

We consider a car, where usually the steering angle takes values into the interval of $\pm 20^{\circ}$. Because steering system has a symmetrical motion, in order to start the synthesis of the mechanism it is considered an interval of values between 0° to 20° for the internal angle δ i.

Now the Spaced of Chesbyshev is applied, (see fig. E1.3 and E1.4):

$$
\delta_{\mathrm{ij}}=\frac{1}{2}\left(\delta_{\mathrm{iff}}+\delta_{\mathrm{ii}}\right)-\frac{1}{2}\left(\delta_{\mathrm{if}}-\delta_{\mathrm{ii}}\right) \cos \frac{\pi(2 \mathrm{j}-1)}{2 \mathrm{n}}
$$

With three precision points, the results for the internal steering angle are:

$$
\begin{gathered}
\delta_{i 1}=1.339745^{\circ}=0.023382961 \mathrm{rad} . \\
\delta_{\mathrm{i} 2}=9.999993^{\circ}=0.1745328 \mathrm{rad} \\
\delta_{\mathrm{i} 3}=18.66024^{\circ}=0.325682639 \mathrm{rad}
\end{gathered}
$$

For the external steering angle, applying the Proportion of Akerman, (ec.E1.2), the results are:

$$
\begin{aligned}
& \delta_{\mathrm{el} 1}=1.325058^{\circ}=0.023126621 \mathrm{rad} . \\
& \delta_{\mathrm{e} 2}=9.242352^{\circ}=0.161309478 \mathrm{rad} . \\
& \delta_{\mathrm{e} 3}=16.23025^{\circ}=0.283271304 \mathrm{rad} .
\end{aligned}
$$

Figure E1.3.- Spaced of Chesbyshev with three precision points.

Figure E1.4.- Steering system scheme.
d) Synthesis de Bloch and Equation of Freudenstein.

In order to do the synthesis of the mechanism for the steering system, the angles θ_{2}, θ_{4} are used, (see fig. E1.4 and E1.5):

$$
\begin{array}{ll}
\theta_{2}=\pi / 4-\gamma+\delta_{e} & \theta_{4}=3 \pi / 4+\gamma+\delta_{i} \\
\theta_{21}=\pi / 4-\gamma+\delta_{\text {el }}=1.245 & \theta_{41}=3 \pi / 4+\gamma+\delta_{i 1}=5.085 \\
\theta_{22}=\pi / 4-\gamma+\delta_{\text {e2 }}=1.383 & \theta_{42}=3 \pi / 4+\gamma+\delta_{i 2}=5.236 \\
\theta_{23}=\pi / 4-\gamma+\delta_{e 3}=1.505 & \theta_{43}=3 \pi / 4+\gamma+\delta_{\mathrm{i} 3}=5.387
\end{array}
$$

Where angle γ takes the value, $\gamma=0.34906585 \mathrm{rad} .=20^{\circ}$.

Figure E1.5.- Scheme of the mechanism.

Now is able to apply the Synthesis of Bolch, and Equation of Freudenstein.

$$
\begin{aligned}
& \mathrm{K}_{1} \cos \theta_{2}+\mathrm{K}_{2} \cos \theta_{4}+\mathrm{K}_{3}=\cos \left(\theta_{2}-\theta_{4}\right) \\
& \mathrm{K}_{1}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{4}} ; \mathrm{K}_{2}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} ; \mathrm{K}_{3}=\frac{\mathrm{r}_{3}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}-\mathrm{r}_{4}^{2}}{2 \mathrm{r}_{2} \mathrm{r}_{4}}
\end{aligned}
$$

Using the before values of $\theta_{2 \mathrm{j}}, \theta_{4 \mathrm{j}}$, a set of three equations with three unknowns $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} is obtained:

$$
\begin{aligned}
& K_{1} \cos \theta_{21}+K_{2} \cos \theta_{41}+K_{3}=\cos \left(\theta_{21}-\theta_{41}\right) \\
& K_{1} \cos \theta_{22}+K_{2} \cos \theta_{42}+K_{3}=\cos \left(\theta_{22}-\theta_{42}\right) \\
& K_{1} \cos \theta_{23}+K_{2} \cos \theta_{43}+K_{3}=\cos \left(\theta_{23}-\theta_{43}\right)
\end{aligned}
$$

Calculating the values of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} :

$$
\begin{aligned}
\mathrm{K}_{1} & =8.062 \\
\mathrm{~K}_{2} & =7.973 \\
\mathrm{~K}_{3} & =-6.249
\end{aligned}
$$

The length of a bar 1 is chosen:

$$
\mathbf{r}_{1}=\mathbf{1} \mathbf{m} .
$$

Then the length of the three remaining bars of a four bars mechanism are obtained:

$$
\begin{aligned}
\mathbf{r}_{2} & =0.125 \mathrm{~m} . \\
\mathbf{r}_{3} & =0.125 \mathrm{~m} . \\
\mathbf{r}_{4} & =0.837 \mathrm{~m} .
\end{aligned}
$$

e) Synthesis of the mechanism using the computer program SAM PC v5.0:

We can test the before solution using computer programs, as SAM PC v5.0. This computer program provides a "Wizard" menu that can be used in order to apply synthesis of functions:

We choose the "4 Bar Mechanism" option. Then the following form appears:

Next step is to introduce the pairs of angles (α, β), and the coordinates of A_{0} and B_{0},

As it is considered in the section f) of this exercise, for the synthesis we have used the angles θ_{2}, θ_{4}, (see figure E1.5.) This implies:

$$
\begin{gathered}
\alpha=\theta_{2} \\
\beta=\pi-\left(2 \pi-\theta_{4}\right)=\theta_{4}-\pi \\
\alpha_{1}=71.3332603^{\circ} ; \quad \beta_{1}=111.349099^{\circ} \\
\alpha_{2}=79.2400796^{\circ} ; \quad \beta_{2}=120.000764^{\circ} \\
\alpha_{3}=86.2301661^{\circ} ; \quad \beta_{3}=128.652428^{\circ}
\end{gathered}
$$

Also, in section f), we have chosen, $\mathrm{r}_{1}=1 \mathrm{~m}$. Consistently, we can adjust the following coordinates of A_{0} and B_{0} :
$\mathrm{A}_{0}(0,0) \mathrm{mm}$.
$\mathrm{B}_{0}(1000,0) \mathrm{mm}$.

Now, we introduce all the before information in the form, as follows:

Then "O.K." is stroke, and it appears the solution:
(3)

We can complete the mechanism in order to design it more realistic than before:
(6) q_{7}^{7}
(3)

(9)

The next figure shows the relation between both angles α and β

Graph of Selected items

