EXERCICE 1

Design of the steering system of an automobile, as it is shown in the figure.

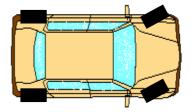


Figure E1.1.- Design of the steering system of an automobile.

Solution:

- a) First requirements:
 - Frontal steering system.
 - Null yaw tyre angles .
- b) Kinematic requirements:
 - As figure E.2. shows, the correct motion of the car forces

to $\delta i \neq \delta e$.

The ratio between δi and δe is the known "Proportion of Akerman":

$$\operatorname{Cot}(\delta_{i}) - \operatorname{Cot}(\delta_{e}) = \frac{b}{L}$$

(ec.E1.1)

Where "b" is the wheel track of the car, and "L" is the wheelbase. For an average car:

Therefore:

$$\cot(\delta i)$$
 - $\cot(\delta e)$ = 0,47411
(ec.E1.2)

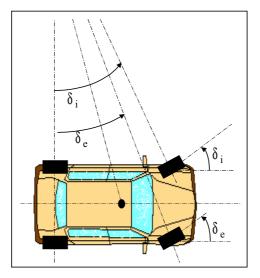


Figure E1.2.- Kinematic requirement for the right operation of the steering system.

c) Precision points.

We consider a car, where usually the steering angle takes values into the interval of $\pm 20^{\circ}$. Because steering system has a symmetrical motion, in order to start the synthesis of the mechanism it is considered an interval of values between 0° to 20° for the internal angle δi .

Now the Spaced of Chesbyshev is applied, (see fig. E1.3 and E1.4):

$$\delta_{ij} = \frac{1}{2} \left(\delta_{if} + \delta_{ii} \right) - \frac{1}{2} \left(\delta_{if} - \delta_{ii} \right) \cos \frac{\pi (2j-1)}{2n}$$

With three precision points, the results for the internal steering angle are:

$$\begin{split} &\delta_{i1} = 1.339745 \ ^{o} = 0.023382961 \ \text{rad.} \\ &\delta_{i2} = 9.999993 \ ^{o} = 0.1745328 \ \text{rad.} \\ &\delta_{i3} = 18.66024 \ ^{o} = 0.325682639 \ \text{rad.} \end{split}$$

For the external steering angle, applying the Proportion of Akerman, (ec.E1.2), the results are:

$$\begin{split} &\delta_{e1} = 1.325058 \ ^o = 0.023126621 \ rad. \\ &\delta_{e2} = 9.242352 \ ^o = 0.161309478 \ rad. \\ &\delta_{e3} = 16.23025 \ ^o = 0.283271304 \ rad. \end{split}$$

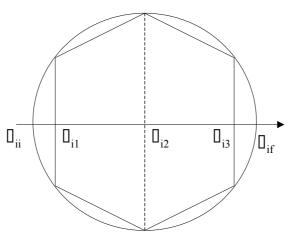


Figure E1.3.- Spaced of Chesbyshev with three precision points.

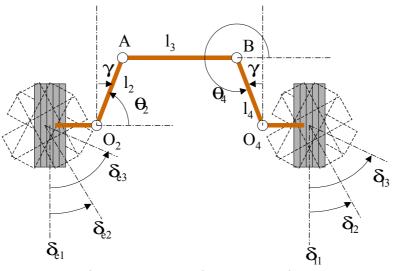


Figure E1.4.- Steering system scheme.

Synthesis de Bloch and Equation of Freudenstein. d)

In order to do the synthesis of the mechanism for the steering system, the angles θ_2 , θ_4 are used, (see fig. E1.4 and E1.5):

> $\theta_2 = \pi/4 - \gamma + \delta_e$ $\theta_4 = 3\pi/4 + \gamma + \delta_i$ $\theta_{21} = \pi/4 - \gamma + \delta_{e1} = 1.245$ $\theta_{41}=3\pi/4+\gamma+\delta_{i1}=5.085$ $\theta_{22} = \pi/4 - \gamma + \delta_{e2} = 1.383$ $\theta_{42}=3\pi/4+\gamma+\delta_{i2}=5.236$ $\theta_{23} = \pi/4 - \gamma + \delta_{e3} = 1.505$ $\theta_{43} = 3\pi/4 + \gamma + \delta_{i3} = 5.387$

Where angle γ takes the value, $\gamma = 0.34906585$ rad. = 20 °.

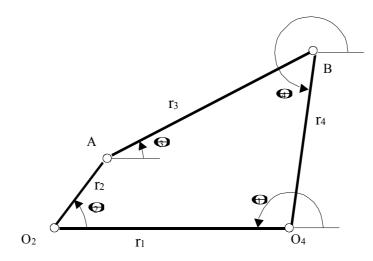


Figure E1.5.- Scheme of the mechanism.

Now is able to apply the Synthesis of Bolch, and Equation of Freudenstein.

$$K_{1} \cos \theta_{2} + K_{2} \cos \theta_{4} + K_{3} = \cos(\theta_{2} - \theta_{4})$$
$$K_{1} = \frac{r_{1}}{r_{4}} ; K_{2} = \frac{r_{1}}{r_{2}} ; K_{3} = \frac{r_{3}^{2} - r_{1}^{2} - r_{2}^{2} - r_{4}^{2}}{2r_{2}r_{4}}$$

Using the before values of θ_{2j} , θ_{4j} , a set of three equations with three unknowns K_1 , K_2 and K_3 is obtained:

$$K_{1} \cos \theta_{21} + K_{2} \cos \theta_{41} + K_{3} = \cos(\theta_{21} - \theta_{41})$$

$$K_{1} \cos \theta_{22} + K_{2} \cos \theta_{42} + K_{3} = \cos(\theta_{22} - \theta_{42})$$

$$K_{1} \cos \theta_{23} + K_{2} \cos \theta_{43} + K_{3} = \cos(\theta_{23} - \theta_{43})$$

```
Calculating the values of K<sub>1</sub>, K<sub>2</sub> and K<sub>3</sub>:
```

```
\begin{array}{l} K_1 = 8.062 \\ K_2 = 7.973 \\ K_3 = -6.249 \end{array}
```

The length of a bar 1 is chosen:

$$r_1 = 1 m.$$

Then the length of the three remaining bars of a four bars mechanism are obtained:

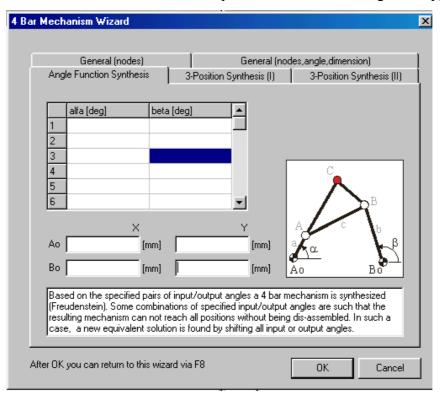
$$r_2 = 0.125 \text{ m.}$$

 $r_3 = 0.125 \text{ m.}$
 $r_4 = 0.837 \text{ m.}$

e) Synthesis of the mechanism using the computer program SAM PC v5.0:

We can test the before solution using computer programs, as SAM PC v5.0. This computer program provides a *"Wizard"* menu that can be used in order to apply synthesis of functions:

🗞 SAM - The Ultimate Mechanism Design	er				_ 8 ×
<u>File</u> Build Graphics Input Motion Loads	<u>analysis D</u> isplay <u>R</u> esults <u>W</u> indow	<u>H</u> elp			
<u>N</u> ew	🔺 🝼 🎁 🚮 🊎 🎸	😫 👗 🔛	🔛 🔯 Q, 🐒	🔍 🔍 🔍	\wp
<u>₩</u> izard ►	<u>4</u> Bar Mechanism	C:VARCHIVOS DE	PROGRAMA\SAM50	Nnoname.sam	- 🗆 🗵
<u>Open</u>	Exact Linear Guiding				
<u>S</u> ave	Approximate Linear Guiding				
S <u>a</u> ve As					I



We choose the "4 Bar Mechanism" option. Then the following form appears:

Next step is to introduce the pairs of angles (α , β), and the coordinates of A₀ and

As it is considered in the section f) of this exercise, for the synthesis we have used the angles θ_2 , θ_4 , (see figure E1.5.) This implies:

 B_0 ,

$$\alpha = \theta_2$$

$$\beta = \pi - (2\pi - \theta_4) = \theta_4 - \pi$$

$$\alpha_1 = 71.3332603 \circ ; \quad \beta_1 = 111.349099 \circ$$

$$\alpha_2 = 79.2400796 \circ ; \quad \beta_2 = 120.000764 \circ$$

$$\alpha_3 = 86.2301661 \circ ; \quad \beta_3 = 128.652428 \circ$$

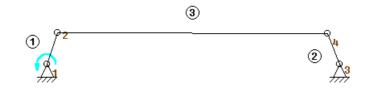
Also, in section f), we have chosen, $r_1 = 1$ m. Consistently, we can adjust the following coordinates of A_0 and B_0 :

 $\begin{array}{c} A_0 \left(\ 0, \ 0 \right) \ mm. \\ B_0 \left(\ 1000, \ 0 \right) \ mm. \end{array}$

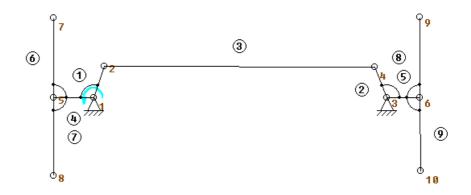
Now,	we intr	oduce a	ll the	before	inform	ation	in the	form,	as follows	s:
------	---------	---------	--------	--------	--------	-------	--------	-------	------------	----

	General (node	∋s) į	Genera	l (nodes,angle,dimension)
An	gle Function Synth	iesis	3-Position Synthesis (I	I) 3-Position Synthesis (I
	alfa [deg]	beta	[deg]	
1	71.333	111.	349	
2	79.240	120.	000	
3	86.230	128.	652	
4				C
5				
6			-	
		×		
Ao		[mm]	0.000 [mm]	Ka K
Во	1000.000	[mm]	0.000 [mm]	Ao Bo
				oar mechanism is synthesized
				itput angles are such that the being dis-assembled. In such a
l	e – a new equivale	ent solutio	on is found by shifting all ir	nput or output angles.

Then "O.K." is stroke, and it appears the solution:



We can complete the mechanism in order to design it more realistic than before:



The next figure shows the relation between both angles α and β

