Tema 4.2

CÁLCULO DE LA MAQUINARIA DE ORDEÑO en PEQUEÑOS RUMIANTES

Antonio Callejo Ramos Dpto. Producción Animal EUIT Agrícola – U.P.M.

Novedades Norma ISO-UNE

- Mayor exigencia de reserva real
 - Tipo de juego de ordeño utilizado
 - Número de ordeñadores en la sala
 - Valor mínimo: 600 l/min (800-1.200)
- Pendiente mínima recomendada de tubería de leche: 0,5%
- Posición recomendada del juego de ordeño y el tubo largo de leche
- Cálculo diámetro tubería de leche
 - Cinética de emisión de leche
 - Caudal de leche circulante

PROCEDIMIENTO DE CÁLCULO

• DIÁMETRO TUBERÍA DE LECHE

• CAUDAL DE LA BOMBA DE VACÍO

• DIÁMETRO TUBERÍA DE VACÍO

<u>Diámetro interior mínimo</u> <u>conducción de leche</u>

La nueva norma ISO 5707, en sus aspectos cualitativos, admite una caída de vacío máxima de 2 Kpa en la conducción de leche, entre el receptor o unidad final y cualquier punto de la misma, con todas las unidades funcionando en condiciones de ordeño real, para favorecer un régimen laminar durante, al menos, el 95% de la duración del ordeño. Esta caída de vacío se considera la adecuada para mantener las condiciones óptimas.

Ejemplo de caudal máximo de leche en una conducción de leche para un rebaño de vacas con un flujo medio máximo de 5 l/min, para unos tiempos medios de puesta entre unidades de 10 a 50 segundos

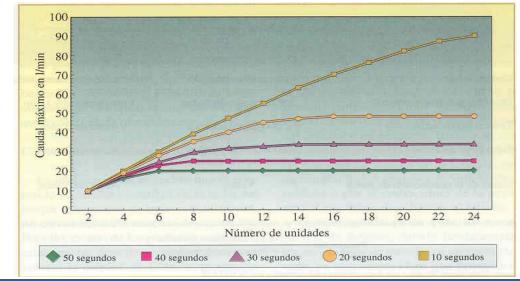
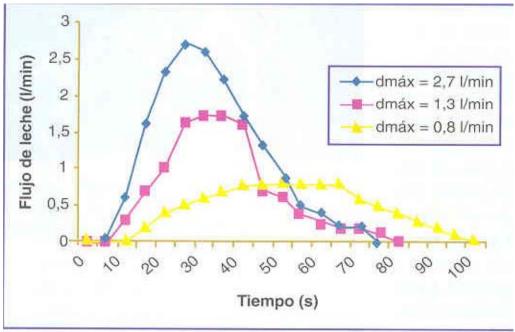
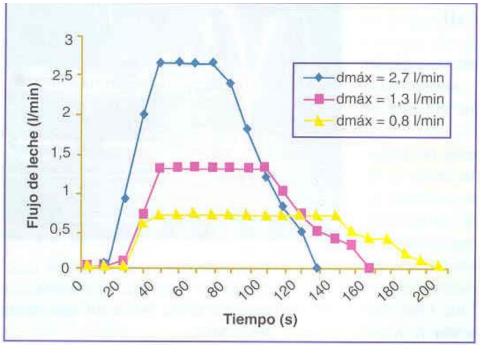



Figura 2. Curvas de emisión de ovejas y cabras con tiempos de ordeño cortos (<120 s)

•Ovejas: dmáx = 0,8 l/min: Lacaune


dmáx = 1,3 l/min: Churra, Latxa y Manchega

dmáx = 2,7 l/min: Sarda

•Cabras: dmáx = 0,8 l/min: Murciano-Granadina

dmax = 1,3 l/min: Canaria (2 ordeños/día)

Figura 3. Curvas de emisión de ovejas y cabras con tiempos de ordeño largos (>120s)

• Cabras: dmáx = 0,8 l/min: Saanen

dmax = 1,3 l/min: Alpina, Canaria (1 ordeño/día)

- Intervalos de colocación:
 - ✓ Cortos: 5 ó 10 seg. NO tratamiento higiénico previo
 - ✓ Largos: 15 '0 20 seg. SI trtamiento higiénico previo

Tabla 11. Predicción del caudal máximo de leche (l/min) en conducciones de leche de pequeños rumiantes con distintos intervalos de colocación de pezoneras y tiempos de ordeño corto (≤10 seg.) y largo (>120 seg.).

Tiempo de colocación	Flujo max/ov.							Nú	mero	de u	nidad	des					151		s s		
(seg.)	kg/min	2	3	4	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
							Tie	mpos	de or	leño d	ortos	(<12) seg.)							
	0,8	1,6	2,4	3,2	4,0	4,8	6,2	7,3	8,2	8,7	9,0	9,2	9,2	9,2	9,2	9,2	9,2	9,2	9,2	9,2	9,2
5	1,3	2,6	3,9	5,2	6,2	7,1	8,4	9,1	9,6	9,9	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0
	2,7	5,4	7,7	9,9	11,7	13,2	15,5	16,6	17,2	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
	0,8	1,6	2,4	3,1	3,7	4,1	4,5	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6
10	1,3	2,6	3,6	4,2	4,6	4,9	5,1	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2	5,2
	2,7	5,0	6,8	7,8	8,3	8,7	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8
	0,8	1,6	2,3	2,8	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1	3,1
15	1,3	2,6	3,0	3,4	3,5	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6	3,6
	2,7	4,5	5,6	5,9	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0	6,0
	0,8	1,6	2,1	2,3	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4
20	1,3	2,3	2,6	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7	2,7
	2,7	4,1	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4	4,4

Procedimiento de cálculo

- Conocer caudal máximo de leche
- Elegir diámetro de la conducción, en función de:
 - Relación aire/flujo de leche
 - Aire intermitente
 - Pendiente de la conducción
- Comprobar que las condiciones elegidas permiten manejar el nº de unidades instaladas

Tabla 10. Máximo flujo de leche por ramal (I/min) para asegurar que el régimen laminar es el más habitual durante el ordeño

Diámetro									Ai	re tra	nsitor	io (Vn	nin)							
interior		25	/min			50	/min			100	l/min			200	l/min			400	I/min	
(mm)	F	endie	nte (%)	P	endier	ite (%)		pe	ndien	te (%)			pendi	ente (9	6)	P	endier	ite (%)	
	0,5	1	1,5	2	0,5	1	1,5	2	0,5	1	1,5	2	0,5	1	1,5	2	0,5	1	1,5	2
										rat	io = 1	10:1								
38	5	7	9	11	4	6	8	10	3	5	6	8	2	3	4	6	1	2	2	3
48,5	10	14	18	21	9	13	17	19	7	11	15	17	5	8	11	14	3	5	8	10
60	17	25	31	36	16	24	30	35	14	22	28	33	11	18	24	29	7	13	18	22
73	29	42	51	60	28	41	50	58	26	38	48	56	22	34	44	52	16	27	36	44
							N EX		ton I	rati	0 = 6,	15:1								
38	6	9	11	13	4	7	10	11	3	5	7	9	2	3	5	6	1	2	3	3
48,5	12	17	22	26	10	16	20	24	8	13	17	21	5	9	13	16	3	5	8	10
60	21	31	38	45	20	29	37	43	17	26	33	39	12	21	27	33	8	14	20	25
73	36	52	64	74	34	50	62	72	31	46	59	69	25	40	52	62	18	31	41	51
									flo	ow ra	tio =	3:1						_		
38	7	12	15	18	5	9	12	15	3	6	8	11	2	3	5	6	1	2	3	3
48,5	16	24	31	36	13	21	27	32	9	16	22	27	6	10	15	19	3	6	8	11
60	30	44	55	64	27	41	51	60	21	34	44	53	14	25	34	42	8	15	22	28
73	51	74	92	107	48	70	88	103	41	63	81	95	31	52	68	82	20	36	50	63

En las Tablas 12 a 18 se puede encontrar el número máximo de unidades por ramal que aseguran la existencia de flujo laminar en las conducciones de leche durante el ordeño.

En los cálculos e ha tenido en cuenta la pendiente de la conducción, el montaje de la misma (simple o en anillo) y el tipo de juego de ordeño.

Aire transitor	io (l/min)	
Juego de ordeño	Conducción simple	Conducción en anillo
Convencional	400	200
Válvula automática de cierre	200	100
Válvula automática	50	25

Tabla 14

Número máximo de unidades por ramal para tres flujos de leche máximos y animales con tiempos de ordeño cortos. Tiempos de colocación de 5 s (10 s entre paréntesis)

<u>Juegos de ordeño convencionales</u>

Tipo de	Diámetro		Pen	diente		
conducción	interior (mm)	0,5 %	1 %	1,5 %	2 %	
	37155769	Flujo máximo/a	nimal = 0,8 l/min	8 8		
	38	2 (2)	3 (3)	5 (5)	7 (a)	
	48,5	6 (a)	11 (a)	a (a)	a (a)	
Anillo	60	a (a)	a (a)	a (a)	a (a)	
	73	a (a)	a (a)	a (a)	a (a)	
	38	1 (1)	2 (2)	2 (2)	3 (3)	
Simple	48,5	3 (3)	6 (a)	11 (a)	a (a)	
18 8	60	9 (a)	a (a)	a (a)	a (a)	
	73	a (a)	a (a)	a (a)	a (a)	

(a) = Número ilimitado de unidades de ordeño

Tabla 17

Número máximo de unidades por ramal para tres flujos de leche máximos y animales con tiempos de ordeño largos. Tiempos de colocación de 5 s (10 s entre paréntesis)

Juegos de ordeño dotados de convencionales

BACII-II	Nominal internal	Ma	ximum number of	units for a slope	of
Milkline type	diameter	0,5 %	1 %	1,5 %	2 %
		Peak flow p	er animal = 0,8 kg/	min	
7 E	38	2 (2)	3 (3)	5 (5)	7 (7)
	48,5	6 (6)	10 (10)	13 (15)	17(a)
looped	60	13 (15)	22 (a)	a (a)	a (a)
	73	a (a)	a (a)	a (a)	a (a)
	38	1 (1)	2 (2)	2 (2)	3 (3)
dead- ended	48,5	3 (3)	6 (6)	10 (10)	12 (13)
	60	8 (8)	16 (a)	22 (a)	31 (a)
	73	20 (a)	a (a)	a (a)	a (a)

(a) = Número ilimitado de unidades de ordeño

CAUDAL BOMBA DE VACÍO

- Cubrir necesidades durante el ordeño y el lavado
- Suficiente reserva para compensar entradas imprevistas de aire
- Impedir una caída de vacío en la Unidad Final superior a 2 kPa:
 - Puesta y retirada de pezoneras
 - Caída accidental de las mismas

Cálculo del Caudal de la BOMBA DE VACÍO

Función de:

- DEMANDA DURANTE EL ORDEÑO, INC. RESERVA REAL
- DEMANDA ADICIONAL DURANTE EL LAVADO, SI ÉSTA
 ES SUPERIOR A LA DE ORDEÑO
- DEMANDA DE LOS EQUIPOS AUXILIARES
- CORRECCIÓN SEGÚN ALTITUD Y NIVEL DE VACÍO

Definición:

Cantidad de aire (l/min) que puede entrar en el sistema sin que el vacío descienda más de 2 kPa

Tabla 1. Reservas reales mínimas⁽¹⁾ para instalaciones de ovejas y cabras en función del juego de ordeño utilizado

Juego de ordeño dotado	N° de	Reserva real mínima	(I/min de aire libre)
de	uds.	Máquinas de ordeño	Máquinas de ordeño
		con conducción	con cubo
Válvula automática +	n ≤ 10	200 + 20n	
retirador automático de	n > 10	400 + 10(n-10)	
pezoneras		(Tabla 2)	
Válvula automática	n ≤ 10	200 + 20n + nA	100 + 20n + nA
	n > 10	400 + 10(n-10) + nA	300 + 10(n-10) + nA
		(Tabla 3)	
Válvula automática de	n ≤ 10	200 + 20n + 200M	100 + 20n + 100M
cierre de vacío	n > 10	400 + 10(n-10) + 20M	300 + 10(n-10) + 100M
		(Tabla 4)	
Convencional	n ≤ 10	200 + 20 n + 400M	100 + 20n + 200M
	n > 10	400 + 10(n-10) + 400	300 + 10(n-10) + 200M
		(Tabla 5)	

n = número de juegos de ordeño

M = número de ordeñadores

A = cantidad de aire extra necesaria para el funcionamiento de los sistemas de corte automático del vacío cuando la unidad está desconectada)

^{(1):} Añadir el consumo de aire de los equipos accesorios

Tabla 1. Reservas reales mínimas⁽¹⁾ para instalaciones de ovejas y cabras en función del juego de ordeño utilizado

Juego de ordeño dotado	Nº de	Reserva real mínima	(I/min de aire libre)	1
de	uds.	Máquinas de ordeño	Máquinas de ordeño	1
		con conducción	con cubo	
Válvula automática +	n ≤ 10	200 + 20n		
retirador automático de	n > 10	400 + 10(n-10)		
pezoneras	Válvula	automática: dispositivo q	ue, automáticamente, abi	re el
Válvula automática		as pezoneras en la puesta	·	
	cuando	el juego de ordeño se des	prende del animal.	
Válvula automática de	Válvula	automática de cierre: disp	positivo que corta el vacío)
cierre de vacío	cuando	el juego de ordeño se des	prende del animal en plei	no
Comment	ordeño.			
Convencional	Juego d	e ordeño convencional: ju	iegos de ordeño que pose	en
	_	ositivo de apertura y cierre	• •	
n = número de juegos de ordeño M = número de ordeñadores	•	ón manual.	·	
	oara el funcio	onamiento de los sistemas de corte au	itomático del vacío cuando la unidad	

(1): Añadir el consumo de aire de los equipos accesorios

- Se introduce el número de ordeñadores en el cálculo
- A mayor nº de ordeñadores, más probabilidades de que dos ó más juegos estén siendo manipulados a la vez, multiplicando las entradas de aire al sistema
- Los tiempo de ordeño son reducidos ¡
- Cambios frecuentes de pezoneras

pezoneras		(Tabla 2)	
Válvula automática	n ≤ 10	200 + 20n + nA	100 + 20n + nA
	n > 10	400 + 10(n-10) + n	300 + 10(n-10) + nA
		(Tabla 3)	
Válvula automática de	n ≤ 10	200 + 20n + 200M	100 + 20n + 100M
cierre de vacío	n > 10	400 + 10(1 -10) + 20M	300 + 10(n-10) + 100M
		(Tabla 4)	
Convencional	n ≤ 10	200 + 20 n + 400M	100 + 20n + 200M
	n > 10	400 + 10(n-10) + 400	300 + 10(n-10) + 200M
		(Tabla 5)	

n = número de juegos de ordeño

M = número de ordeñadores

A = cantidad de aire extra necesaria para el funcionamiento de los sistemas de corte automático del vacío cuando la unidad está desconectada)

^{(1):} Añadir el consumo de aire de los equipos accesorios

Hay que añadir:

- Fugas en el sistema de leche
- Fugas en las conducciones de aire
- Pérdidas de regulación
- Aplicar coef. corrector por altitud y vacío

REGULADOR BIEN MANTENIDO
Y DE SENSIBILIDAD ADECUADA

Las tablas 2 a 5 muestran los valores de reserva real de acuerdo con las fórmulas de la Tabla 1 para cada tipo de juego de ordeño de los citados y en función del número de unidades, hasta 36. Cuando se dispone de válvula automática, se han considerado dos ejemplos de 20 l/min y 40 l/min de aire extra para su funcionamiento)

Tabla 2.
Reserva real mínima para ordeñar, en l/min de aire libre, para
Juegos de ordeño dotados de válvula automática y retirada automática de pezoneras

Número de unidades	litros de aire libre/min
2	240
3	260
4	280
5	300
6	320
7	340
8	360

Tabla 3
Reserva real mínima para ordeñar, en l/min de aire libre, para
Juegos de ordeño con válvula automática

(ejemplos con aire extra de 20 l/min y 40 l/min)

Número de unidades	Máquinas con cor		Máquina de ordeño con olla		
	E = 20 I/min	E = 40 l/min	E = 20 l/min	E = 40 l/min	
2	280	320	180	220	
3	320	380	220	280	
4	360	440	260	340	
5	400	500	300	400	
6	440	560	340	460	
7	480	620	380	520	

Las tablas 2 a 5 muestran los valores de reserva real de acuerdo con las fórmulas de la Tabla 1 para cada tipo de juego de ordeño de los citados y en función del número de unidades, hasta 36. Cuando se dispone de válvula automática, se han considerado dos ejemplos de 20 l/min y 40 l/min de aire extra para su funcionamiento)

Tabla 4
Reserva real mínima para ordeñar, en l/min de aire libre, para
Juegos de ordeño con válvula automática de cierre de vacío

Número de unidades	Máquina de ordeño c	on conducción de leche	Máquina de ordeño con olla		
	M = 1	M = 2	M = 1	M = 2	
2	440	640	240	340	
3	460	660	260	360	
4	480	680	280	380	
5	500	700	300	400	
6	520	720	320	420	

Tabla 5
Reserva real mínima para ordeñar, en l/min de aire libre, para
Juegos de ordeño convencionales

Número de unidades	Máquina de ordeño co	n conducción de leche	Máquina de ordeño con ollas		
	<i>M</i> = 1	M = 2	<i>M</i> = 1	<i>M</i> = 2	
2	640	1 040	340	540	
3	660	1 060	360	560	
4	680	1 080	380	580	
5	700	1 100	400	600	
6	720	1 120	420	620	

Necesidades de aire para el lavado

- Se requiere flujo turbulento, a 7-10 m/s
- Caudal necesario

$$Q = \frac{\pi \times d^2}{4} \times V \times \frac{p_B - p}{p_B} \times \frac{6}{100}$$

donde:

Q: Caudal necesario para lavar (l/min)

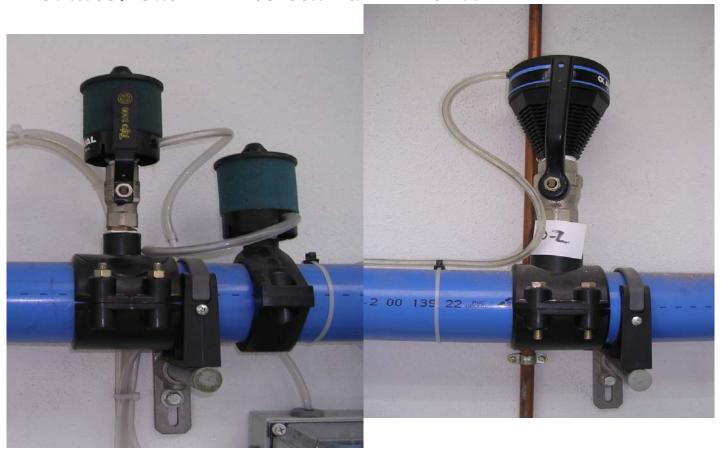
d: Diámetro interior de la conducción (en dm)

V: velocidad del aire y de la solución en el interior de la conducción (en dm/min)

p_B: presión atmosférica

p: vacío de trabajo durante el lavado

- •Caudal para lavado


 vs
- ·Caudal para reserva

Se toma el mayor de ellos como base para el cálculo de la bomba

El vacío de ordeño puede ser insuficiente para conseguir régimen turbulento durante el lavado

1. Cambiar el vacío antes de lavar y antes de ordeñar

2. Instalar dos sensores de regulador, calibrados a vacíos distintos. Uno de ellos con llave de cierre

Caudal de aire necesario para la limpieza (I/min) a una velocidad de 8 m/s y una presión atmosférica de 100 kPa (excepto la última fila).

Vacío	Caudal	de aire co	n un dián	netro inte	rior mínir	no de la c	conducció	n de lech	e de (mm)
(kPa)	34	36	38	40	44	48	50	60	73
36	279	313	348	386	467	556	603	869	1285
38	270	303	338	374	453	539	584	841	1245
40	261	293	327	362	438	521	565	814	1205
42	253	283	316	350	423	504	547	787	1165
44	244	274	305	338	409	486	528	760	1125
46	235	264	294	326	394	469	509	733	1085
48	227	254	283	314	380	452	490	706	1045
50	218	244	272	302	365	434	471	679	1004

Multiplicar por K_n cuando P_B≠100 kPa

 $K_n = (P_B - p)/p_B$

Coeficiente K_n en función de la altitud y el nivel de vacío

Altitude	Pression atmosphérique	N iveau de vide en kPa															
	atmospherique	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
< 300 m	100	0.65	0.64	0.63	0.62	0.61	0.60	0.59	0.58	0.57	0.56	0.55	0.54	0.53	0.52	0.51	0.50
300 à 700 m	95	0.63	0.62	0.61	0.60	0.59	0.58	0.57	0.56	0.55	0.54	0.53	0.52	0.51	0.49	0.48	0.47
700 à 1200 m	90	0.61	0.60	0.59	0.58	0.57	0.56	0.54	0.53	0.52	0.51	0.50	0.49	0.48	0.47	0.46	0.44
1200 à 1700 m	85	0.59	0.58	0.56	0.55	0.54	0.53	0.52	0.51	0.49	0.48	0.47	0.46	0.45	0.44	0.42	0.41
1700 à 2000 m	80	0.56	0.55	0.54	0.53	0.51	0.50	0.49	0.48	0.46	0.45	0.44	0.43	0.41	0.40	0.39	0.38

Necesidades de aire para el lavado en función del coeficiente Kn y del diámetro de la conducción de leche.

Kn		Diamètre du lactoduc en mm												
	34	36	38	40	44	48	50	60	66	73	98			
0.40	174	195	218	241	292	347	377	543	657	804	1448			
0.41	179	200	223	247	299	356	386	556	673	824	1484			
0.42	183	205	229	253	307	365	396	570	690	844	1521			
0.43	187	210	234	259	314	373	405	584	706	864	1557			
0.44	192	215	240	265	321	382	415	597	723	884	1593			
0.45	196	220	245	271	328	391	424	611	739	904	1629			
0.46	200	225	250	277	336	400	434	624	755	924	1665			
0.47	205	230	256	283	343	408	443	638	772	944	1702			
0.48	209	235	261	290	350	417	452	651	788	964	1738			
0.49	214	239	267	296	358	426	462	665	805	984	1774			
0.50	218	244	272	302	365	434	471	679	821	1004	1810			
0.51	222	249	278	308	372	443	481	692	838	1025	1847			
0.52	227	254	283	314	380	452	490	706	854	1045	1883			
0.53	231	259	289	320	387	460	500	719	870	1065	1919			
0.54	235	264	294	326	394	469	509	733	887	1085	1955			
0.55	240	269	299	332	401	478	518	746	903	1105	1991			
0.56	244	274	305	338	409	486	528	760	920	1125	2028			
0.57	248	278	310	344	416	495	537	774	936	1145	2064			
0.58	253	283	316	350	423	504	547	787	952	1165	2100			
0.59	257	288	321	356	431	512	556	801	969	1185	2136			
0.60	261	293	327	362	438	521	565	814	985	1205	2172			
0.61	266	298	332	368	445	530	575	828	1002	1225	2209			
0.62	270	303	338	374	453	539	584	841	1018	1246	224			
0.63	275	308	343	380	460	547	594	855	1035	1266	228			
0.64	279	313	348	386	467	556	603	869	1051	1286	2317			
0.65	283	318	354	392	474	565	613	882	1067	1306	2353			

ELEMENTOS AUXILIARES

- a) Los que funcionen permanentemente durante el ordeño
- b) Los que necesitan una cierta cantidad de aire durante un corto período de tiempo durante el ordeño; por ejemplo, retiradores automáticos de pezoneras o puertas de accionamiento automático
- c) Los que funcionan antes o después del ordeño

El consumo de los equipos debe ser especificado por el fabricante

La capacidad de la bomba de vacío debe ser tal que pueda extraer todo el aire que entra en la instalación, es decir, el consumido por el funcionamiento de los pulsadores, el que entra por el orificio de los colectores, el consumido por otros elementos, además de las fugas que pudieran producirse, sin olvidar que debe mantener la reserva de la instalación.

- (1) Al consumo de aire de los pulsadores, colectores y otros elementos auxiliares le sumaremos:
 - a) la reserva real determinada mediante las fórmulas
 - b) las necesidades de aire para el lavado

Consideraremos el mayor valor resultante de las dos sumas anteriores.

- (2) En concepto de fugas, a este valor se le suma 10 l/min, más 2 l/min por cada unidad de ordeño ó 1 l/min en establos con conducción de leche por cada unidad de ordeño
- (3) Sumar las pérdidas del regulador: 10% de la reserva manual (reserva con el regulador desconectado) o la cifra dada por el fabricante.
- (4) Sumar, en concepto de fugas en las conducciones de aire, un 5% del caudal nominal de la bomba

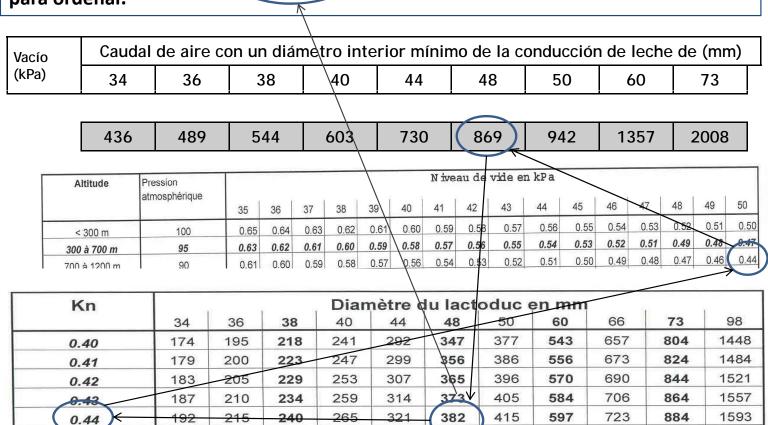
Corrección por altitud y vacío de trabajo

Al valor que resulta de aplicar la secuencia de cálculo de la diapositiva anterior hay que multiplicarlo por el factor de corrección (H) que se especifica en la siguiente Tabla 9, en función de los dos parámetros señalados, altitud geográfica y vacío de trabajo.

(2)	Coeficiente de corrección (H) para un nivel de vació de la bomba de (kPa):																				
(2)	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
100	.67	.68	.69	.70	.71	.73	.74	.75	.77	.78	.80	.82	.83	.85	.87	.89	.91	.93	.95	.98	1.00
95	.68	.70	.71	.72	.74	.75	.77	.78	.80	.82	.84	.85	.87	.89	.92	.94	.96	.99	1.01	1.04	1.07
90	.71	.72	.73	.75	.77	.78	.80	.82	.84	.86	.88	.90	.92	.95	.97	1.00	1.03	1.06	1.09	1.13	1.16
85	.73	.75	.76	.78	.80	.82	.84	.86	.88	.91	.93	.96	.99	1.01	1.05	1.08	1.11	1.15	1.19	1.24	1.28
80	.76	.78	.80	.82	.84	.86	.89	.91	.94	.97	1.00	1.03	1.07	1.10	1.14	1.19	1.23	1.28	1.33	1.39	1.45
	95 90 85	95 .68 90 .71 85 .73	30 31 100 .67 .68 95 .68 .70 90 .71 .72 85 .73 .75	(2) 30 31 32 100 .67 .68 .69 95 .68 .70 .71 90 .71 .72 .73 85 .73 .75 .76	(2) 30 31 32 33 100 .67 .68 .69 .70 95 .68 .70 .71 .72 90 .71 .72 .73 .75 85 .73 .75 .76 .78	(2) 30 31 32 33 34 100 .67 .68 .69 .70 .71 95 .68 .70 .71 .72 .74 90 .71 .72 .73 .75 .77 85 .73 .75 .76 .78 .80	(2) 30 31 32 33 34 35 100 .67 .68 .69 .70 .71 .73 95 .68 .70 .71 .72 .74 .75 90 .71 .72 .73 .75 .77 .78 85 .73 .75 .76 .78 .80 .82	(2) 30 31 32 33 34 35 36 100 .67 .68 .69 .70 .71 .73 .74 95 .68 .70 .71 .72 .74 .75 .77 90 .71 .72 .73 .75 .77 .78 .80 85 .73 .75 .76 .78 .80 .82 .84	(2) 30 31 32 33 34 35 36 37 100 .67 .68 .69 .70 .71 .73 .74 .75 95 .68 .70 .71 .72 .74 .75 .77 .78 90 .71 .72 .73 .75 .77 .78 .80 .82 85 .73 .75 .76 .78 .80 .82 .84 .86	(2) 30 31 32 33 34 35 36 37 38 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 85 .73 .75 .76 .78 .80 .82 .84 .86 .88	(2) 30 31 32 33 34 35 36 37 38 39 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91	(2) 30 31 32 33 34 35 36 37 38 39 40 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91 .93	(2) 30 31 32 33 34 35 36 37 38 39 40 41 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91 .93 .96	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91 .93 .96 .99	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .90 .92 .95	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .92 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91 .93 .96 .99 1.01 1.05	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 .89 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .92 .94 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .90 .99 1.01 1.05 1.08	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 .89 .91 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .92 .94 .96 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 .89 .91 .93 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .91 .93 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03 1.06 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03 1.11 1.15	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 .89 .91 .93 .95 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .91 .93 .95 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03 1.06 1.09 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .91 .93 .96 .99 1.01 1.05	(2) 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 100 .67 .68 .69 .70 .71 .73 .74 .75 .77 .78 .80 .82 .83 .85 .87 .89 .91 .93 .95 .98 95 .68 .70 .71 .72 .74 .75 .77 .78 .80 .82 .84 .85 .87 .89 .91 .93 .95 .98 90 .71 .72 .73 .75 .77 .78 .80 .82 .84 .86 .88 .90 .92 .95 .97 1.00 1.03 1.06 1.09 1.13 85 .73 .75 .76 .78 .80 .82 .84 .86 .88 .90 .92

Ejemplo de cálculo

Consideremos una instalación de ordeño con las siguientes características:


- a) Explotación situada a 1.000 m de altitud
- b) 12 juegos de ordeño dotados de válvula automática
- c) 1 ordeñador
- d) Nivel de vacío de trabajo: 38 kPa
- e) Diámetro de conducción de leche: 48 mm
- f) Entrada de aire en cada juegos de pezoneras: 8 l/min
- g) Caudal suplementario para el funcionamiento de los juegos de ordeño: 20 l/min
- h) Número de pulsadores: 6
- i) Consumo de aire de cada pulsador: 25 l/min
- j) Nivel de vacío para el lavado: 50 kPa

Cálculos:

De acuerdo con la Tabla 1, la reserva real para ordeñar será:

Válvula automática	n ≤ 10 n > 10		100 + 20n + nA 300 + 10(n-10) + nA
--------------------	------------------	--	---------------------------------------

Según la Tabla 6, el caudal de aire necesario para la limpieza, a 50 kPa, de una instalación con conducción de leche de 48 mm de diámetro interno y a una altitud de 1.000 m, debería ser de 382 l/min, que es menor que el de la reserva efectiva para ordeñar.

3) El consumo de aire de los juegos de ordeño (admisión de aire + pulsadores) es de:

$$(8 \times 12) + (25 \times 6) = 246 \text{ I/min}$$

4) Total de caudal de aire necesario durante el ordeño:

5) Total de caudal de aire durante la limpieza:

6) En este ejemplo, la capacidad necesaria para ordeñar es mayor que para el lavado y, por tanto, será tomada como base para el dimensionamiento de la bomba.

- 7) Fugas en el sistema de leche: 10 l/min + (2 x 12)l/min = 34 l/min
- 8) Total: 906 l/min + 34 l/min = 940 l/min
- 9) Las pérdidas de regulación son el 10% de la reserva manual. La reserva era de 660 l/min y es menor que la reserva manual. Por ello:

 Reserva manual = 660 l/min x 100/(100-10) = 660/0,9 = 733 l/min

 Pérdidas de regulación: 733 l/min x 10/100 = 73 l/min

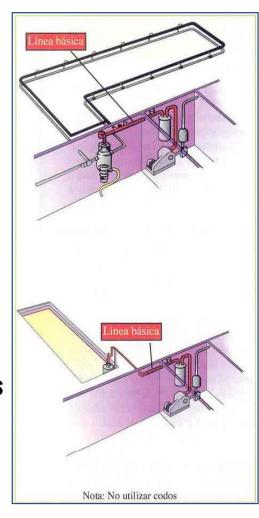
Total: 940 I/min + 73 I/min = 1.013 I/min

10) Las fugas en las conducciones de aire son el 5% de la capacidad de la bomba:

1.013 l/min x 5/(100-5) = 53 l/min Total = 1.013 l/min + 53 l/min = 1.066 l/min

También podría calcularse así: 1.013 l/min /0,95 = 1.066 l/min

11) Con una caída de vacío máxima permitida de 3 kPa entre la bomba y el punto de medida, el nivel de vacío de la bomba será: 38 kPa + 3 kPa = 41 kPa


La corrección por altitud de acuerdo con la Tabla 9 para una altitud de 1.000 m y un nivel de vacío de 41 kPa, da un factor de corrección H = 0,90, lo que implica que, para una presión atmosférica de 100 kPa y un vacío de trabajo de 50 kPa, la capacidad nominal de la bomba será de:


 $1.066 \text{ l/min } \times 0.9 = 959 \text{ l/min}$

		C	oeficie	nte c	de co	rreco	ión (H) pa	ra ur	n nive	el de	vacio	de	la
(1)	(2)		bomba de (kPa):											
		30	31	32	33	34	35	36	37	38	39	40	41	42
0-300	100	.67	.68	.69	.70	.71	.73	.74	.75	.77	.78	.80	. 32	.83
300-700	95	.68	.70	.71	.72	.74	.75	.77	.78	.80	.82	.84	.85	.87
700- 1200	90	.71	.72	.73	.75	.77	.78	.80	.82	.84	.86	.88	.90	.92

Consideraciones en el cálculo

- Material
 - Plástico y acero inox.
 - Hierro galvanizado
- Conducción de vacío
 - Principal o Básica
 - De pulsación
- Caída de vacío máx:
 - 3 kPa
 - 2 kPa
- Nº de piezas especiales
 - Tes, codos, depósitos, etc

La caída de vacío, de aproximadamente hasta 3 kPa, en una conducción de aire con poca rugosidad, normalmente de plástico o de acero inoxidable, puede calcularse mediante la siguiente ecuación (1):

$$\Delta p = 27.8 \ x \ l \ x \frac{q^{1.75}}{d^{4.75}}$$

donde:

 Δp : caída de presión en la conducción (kPa)

I: longitud de la conducción (m)

q: caudal en la conducción (I/min de aire libre)

d: diámetro interno de la conducción (mm)

Puesto que el caudal en la conducción y la máxima caída de vacío permitida son normalmente conocidos, esta ecuación (1) se puede escribir:

$$d = \sqrt[4.75]{\frac{27.8 \times l \times q^{1.75}}{\Delta p}}$$

Diámetros interiores mínimos de las conducciones de aire, recomendados para una caída de vacío de 1 kPa debida al flujo de aire en canalizaciones simples de plástico o de acero inoxidable

Caudal				etro i itud d						
de aire	5	10	15		25		40			70
100	15	18	19	21	22	22	24	25	26	27
200	20	23	25	27	28	29	31	32	34	35
300	23	27	29	31	32	34	36	37	39	40
400	26	30	32	34	36	37	40	42	43	45
500	28	32	35	37	39	41	43	45	47	49

Esta tabla se deriva de la fórmula anterior y se utiliza para el cálculo de la tubería principal de vacío.

Existen tablas similares (ver texto) para conducciones en anillo, para caídas de vacío de 2 y 3 kPa y para conducciones de hierro galvanizado

Los elementos de la conducción referidos anteriormente como son los codos , las "T", los orificios de entrada y de salida de los recipientes producen pérdidas equivalentes a las originadas por una cierta longitud de conducción simple. La tabla siguiente da estas longitudes equivalentes, que se sumarán a la longitud de la misma para calcular su diámetro interior.

Longitud equivalente correspondiente a diferentes piezas especiales, expresado en longitud aproximada de conducción de diferentes diámetros

	№ de		Diámetro d	e la condu	cción (mm)	
Causa del rozamiento	diámetros	38	50	63	75	100
	de la conducción	Longitud e	quivalente ap	oroximada de	conducción	, en metros
Codos						
45°	8 a 10	0,3	0,5	0,6	0,8	0,9
90°, pequeño radio de			4.0	0.4	0.0	0 (
curvatura (R/D = ,75) ^a	35 a 40	1,4	1,8	2,4	3,0	3,6
90°, radio de curvatura mediano (R/D =1,8) ^a		0,7	0,9	1,1	1,2	1,8
	15 a 20	0,7	0,7	1,1	1,2	1,0
"Tes"						
Conexión con flujo recto	15 a 20	0,7	0,9	1,1	1,2	1,8
Conexión con flujo lateral	40 a 45	1,6	2,1	2,4	2,7	4,2
Conexión inclinada	20 a 25	0,9	1,1	1,1,	1,5	2,2
Tanques y depósitos						
Contracción brusca	20 a 25	0,9	1,1	1,2	1,5	2,2
Expansión brusca	40 a 45	1,6	2,1	2,4	2,7	4,2
Depósito sanitario,						
tanque de distríbución,	60 a 70	2,5	3,2	3,6	4,2	6,4
receptor/unidad final ^b						

a: R/D corresponde al radio interior del codo dividido por el diámetro interno de la tubería

b: Una entrada y una salida