I) Clasificar las transformaciones X'=NX siguientes aplicando el método propuesto, y hallar sus elementos característicos.

N	$ \begin{bmatrix} 1 & 0 & 0 \\ 2 & -\frac{1}{2} & 0 \\ 3 & 0 & -\frac{1}{2} \end{bmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & \frac{1}{2} \end{pmatrix} $	$\begin{pmatrix} 1 & 0 & 0 \\ 2 & \sqrt{3} & -1 \\ -2 & -1 & -\sqrt{3} \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & \frac{4}{5} & \frac{3}{5} \\ 4 & \frac{3}{5} & -\frac{4}{5} \end{pmatrix} $
М	$ \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} $	$\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$	$\begin{pmatrix} \sqrt{3} & -1 \\ -1 & -\sqrt{3} \end{pmatrix}$	$\begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{pmatrix}$
¿Es MM ^t =pI _n ?	$\begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$		$\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
k (si procede)			2	
Q (si procede)			$\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	
$ \mathbf{M} $	1/4		-4	
Puntos dobles	(4/3,2)		$\left(-\frac{2\sqrt{3}+4}{3}, \frac{4-2\sqrt{3}}{3}\right)$	No tiene
Tipo de transformación	Homotecia inversa	Afin	Semejanza inversa	Simetría deslizante
Elementos característicos	centro (4/3,2) y razón –½		$C = \left(-\frac{2\sqrt{3} + 4}{3}, \frac{4 - 2\sqrt{3}}{3}\right) \text{ y raz\'on } 2$ $y - \frac{4 - 2\sqrt{3}}{3} = (\sqrt{3} - 2)(x + \frac{2\sqrt{3} + 4}{3})$ Here S	$e = 2x - 6y + 11 = 0$ $u = (\frac{21}{10}, \frac{7}{10})$
Descomposición canónica			$\mathrm{H}_{\mathrm{C},k}\circ\mathrm{S}_{e}$	

II) Clasificar las transformaciones X'=NX siguientes aplicando el método propuesto, y hallar sus elementos característicos.

elementos caracte				
N	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & \sqrt{2} & 1 \\ -\sqrt{2} & -\sqrt{2} & 0 & \sqrt{2} \\ 0 & 1 & -\sqrt{2} & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & -5 \\ -12 & 0 & 5 & 0 \\ -6 & -5 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \end{pmatrix} $
M	$ \begin{pmatrix} 1 & \sqrt{2} & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & -\sqrt{2} & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & -5 \\ 0 & 5 & 0 \\ -5 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$
¿Es MM ^t =pI _n ?	4 I ₃		25 I ₃	I_3
k (si procede)	2		5	
Q (si procede)	$ \begin{array}{c ccccc} & & & & & & & & \\ & 1/2 & & \sqrt{2}/2 & & 1/2 \\ & -\sqrt{2}/2 & & 0 & & \sqrt{2}/2 \\ & 1/2 & & -\sqrt{2}/2 & & 1/2 \\ \end{array} $		$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} $	
$ \mathbf{M} $	8	1	-125	1
Puntos dobles	(0,0,1)		(-4/3,3,2/3)	No tiene
Tipo de transformación	Semejanza directa	Afin	Semejanza inversa	Movimiento Helicoidal
Elementos característicos	Centro (0,0,1) y razón 2		Centro (-4/3,3,3/2) y razón 5	$G_{e,\alpha} \circ T_{u}$ $\vec{u} = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})$ $e = x = y + \frac{1}{3} = \frac{z - \frac{2}{3}}{-1}$ $\alpha = 120^{\circ}$
Descomposición canónica	$H_{C,k} \circ G_{e,\alpha}$ $e \equiv \{x = z - 1, y = 0\}$ $\alpha = -90^{\circ}$		$H_{C,-k} \circ G_{e,\alpha}$ $e \equiv \begin{cases} x = -\frac{4}{3} + t \\ y = 3 \\ z = \frac{2}{3} + t \end{cases}$ $\alpha = \pm 180^{\circ}$	

III) Estudiar la semejanza T , tal que los puntos A=(1,2,3), B=(1,1,1), C=(-1,2,3) y D=(1,0,2) se transforman en A'=(-3,8,7), B'=(-3,2,4), C'=(3,8,7), y D'=(-3,5,1) respectivamente.

SOLUCIÓN:

Se cumple que: T(A)=A', T(B)=B', T(C)=C' y T(D)=D' y en forma matricial, escribiendo

conjuntamente
$$T \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ x' \\ y' \\ z' \end{pmatrix}$$
 para los cuatro puntos:

$$T \cdot \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 1 & 2 & 0 \\ 3 & 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & -3 & 3 & -3 \\ 8 & 2 & 8 & 5 \\ 7 & 4 & 7 & 1 \end{pmatrix} \Rightarrow T = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & -3 & 3 & -3 \\ 8 & 2 & 8 & 5 \\ 7 & 4 & 7 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 1 & 2 & 0 \\ 3 & 1 & 3 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ -1 & 0 & 0 & 3 \\ 1 & 0 & 3 & 0 \end{pmatrix}$$

Las ecuaciones de la transformación geométrica T, son:

$$\begin{pmatrix} 1 \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ -1 & 0 & 0 & 3 \\ 1 & 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix}$$

Se tiene que |T| = 27. ¿Qué tipo de semejanza es T? **DIRECTA**

Los puntos invariantes o dobles se obtienen resolviendo el sistema:

$$\begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ -1 & 0 & 0 & 3 \\ 1 & 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix}, \text{ cuya solución es } \boxed{x=0, y=-1/4, z=1/4}$$

que recibe el nombre de centro de la semejanza

Si queremos hallar la descomposición canónica en el producto de una homotecia y un movimiento, resulta la homotecia H de centro C=(0,-1/4,1/4) y razón k=3 y para determinar el movimiento M se considera

la matriz ortogonal
$$\frac{1}{k}M$$
 que corresponde a una rotación de eje
$$\begin{cases} x = 0 \\ y = -\frac{1}{4} + t \\ z = \frac{1}{4} + t \end{cases}$$
 La amplitud se obtiene mediante

la traza, que en este caso es $1+2\cos\alpha=-1 \Rightarrow \boxed{\alpha=\pi}$

IV) Hallar las ecuaciones de los siguientes movimientos de E₃:

	ciones de los siguier			Б .
Movimiento T	Base B adecuada	Matriz M _B	Matriz M _C	Ecuaciones
		asociada a T respecto de la	asociada a T respecto de la	
		hase R.	hase canónica.	
Giro de eje la recta que \int pasa por A(1,1,1) \int vector (0,2,0) y ángulo $\alpha = -45^{\circ}$	$ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} $	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} $	$ \begin{bmatrix} \sqrt{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \sqrt{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} $	$ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x - 1 \\ y - 1 \\ z - 1 \end{pmatrix} $
Simetría especular de $\pi = x + z + 2 = 0$	$ \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} $	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x - 0 \\ y - 0 \\ z + 2 \end{pmatrix} $
Simetría rotacional de $\pi = y - 1 = 0$, eje $e = \begin{cases} x = 0 \\ z = 2 \end{cases}$ y $\alpha = -90^{\circ}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$		$ \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x - 0 \\ y - 1 \\ z - 2 \end{pmatrix} $
Simetría deslizante de plano $\pi = x + y + z = 1 \text{ y}$ vector $\overrightarrow{u} = (\frac{1}{3}, \frac{1}{3}, -\frac{2}{3})$	$\begin{bmatrix} \frac{\sqrt{3}}{\sqrt{3}} & 0 & \frac{\sqrt{6}}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{bmatrix}$			$ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + M_C \begin{pmatrix} x - 0 \\ y - 0 \\ z - 1 \end{pmatrix} + \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{pmatrix} $
Movimiento helicoidal de $e = x = y + \frac{1}{3} = \frac{z - \frac{2}{3}}{-1}$ $\alpha = -120^{\circ} \text{ y}$ $\vec{u} = (\frac{2}{3}, \frac{2}{3}, -\frac{2}{3})$	$ \begin{bmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix} $	$ \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$ \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} $	$ \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} + \mathbf{M}_{C} \begin{pmatrix} \mathbf{x} - 0 \\ \mathbf{y} + \frac{1}{3} \\ \mathbf{z} - \frac{2}{3} \end{pmatrix} + \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} $

V) Sean las simetrías especulares S_1 , S_2 , S_3 , S_4 de planos $\pi_1 \equiv x-y+z=0$,

 $\pi_2 \equiv x-y+z-3=0$, $\pi_3 \equiv -2x-y+z=0$, $\pi_4 \equiv 2y+z=0$ respectivemente.

Estudiar la posición relativa entre los planos:

π ₁ у π ₂	PARALELOS
$\pi_1 y \pi_3$	SE CORTAN PERPENDICULARMENTE
π ₁ у π ₄	SE CORTAN
$\pi_3 y \pi_4$	SE CORTAN

Producto de dos simetrías:

Elegir dos simetrías especulares cuya composición sea:

UNA TRASLACIÓN	$S_2 oS_1$	Módulo del vector $ \vec{v} = 2d(\pi_1, \pi_2) = \frac{6}{\sqrt{3}}$
UN GIRO	$S_3 oS_4$	Eje de giro: x=3t,y=-2t,z=4t
LA IDENTIDAD	SποSπ	

Producto de tres simetrías:

Elegir tres simetrías especulares cuya composición en el orden adecuado sea:

	1	<i>J</i> 1
UNA SIMETRÍA	$S_1 o S_2 o S_3$	Plano = π_3
DESLIZANTE		Vector = (2,-2,2)
UNA SIMETRÍA		Plano x=1
ROTACIONAL		Amplitud=143°07'48''
UNA SIMETRÍA	$S_1 o S_2 o S_2$	Plano = π_1
ESPECULAR		

Producto de cuatro simetrías:

Elegir cuatro simetrías especulares cuya composición en el orden adecuado sea un movimiento helicoidal:

$$S_1 \circ S_2 \circ S_3 \circ S_4$$

Hallar la ecuación de los movimientos resultantes:

$$\begin{bmatrix}
S_{1} \circ S_{2} \circ S_{3} \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-2 & -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
2 & -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-2 & \frac{2}{3} & \frac{1}{3} & \frac{2}{3}
\end{bmatrix} \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix}$$

$$\begin{bmatrix}
S_{1} \circ S_{2} \circ S_{3} \circ S_{4} \\
y' \\
z'
\end{pmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
-2 & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\
2 & -\frac{1}{3} & -\frac{2}{15} & \frac{14}{15} \\
2 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\
2 & -\frac{2}{3} & -\frac{11}{3} & \frac{2}{3}
\end{bmatrix} \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix}$$