
ODE Function Summary

Initial Value ODE Problem Solvers

These are the MATLAB initial value problem solvers. The table lists the kind of problem you can solve with
each solver, and the method each solver uses.

ODE Solution Evaluation

If you call an ODE solver with one output argument, it returns a structure that you can use to evaluate the
solution at any point on the interval of integration.

ODE Option Handling

An options structure contains named integration properties whose values are passed to the solver, and which
affect problem solution. Use these functions to create, alter, or access an options structure.

ODE Solver Output Functions

If an output function is specified, the solver calls the specified function after every successful integration step.
You can use odeset to specify one of these sample functions as the OutputFcn property, or you can modify them
to create your own functions.

Mathematics

Solver Solves These Kinds of Problems Method

ode45 Nonstiff differential equations Runge-Kutta

ode23 Nonstiff differential equations Runge-Kutta

ode113 Nonstiff differential equations Adams

ode15s Stiff differential equations and DAEs NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

ode23t Moderately stiff differential equations and DAEs Trapezoidal rule

ode23tb Stiff differential equations TR-BDF2

Function Description

deval Evaluate the numerical solution using output of ODE solvers.

Function Description

odeset Create or alter options structure for input to ODE solvers.

odeget Extract properties from options structure created with odeset.

Function Description

odeplot Time-series plot

Página 1 de 2Differential Equations (Mathematics)

21/04/2004file://E:\help\techdoc\math_anal\diffeq3.html

ODE Initial Value Problem Examples

These examples illustrate the kinds of problems you can solve in MATLAB. From the MATLAB Help browser,
click the example name to see the code in an editor. Type the example name at the command line to run it.

odephas2 Two-dimensional phase plane plot

odephas3 Three-dimensional phase plane plot

odeprint Print to command window

Note The Differential Equations Examples browser enables you to view the code for the ODE
examples and DAE examples. You can also run the examples from the browser. Click on these links to
invoke the browser, or type odeexamples('ode')or odeexamples('dae')at the command line.

Example Description

amp1dae Stiff DAE - electrical circuit

ballode Simple event location - bouncing ball

batonode ODE with time- and state-dependent mass matrix - motion of a baton

brussode Stiff large problem - diffusion in a chemical reaction (the Brusselator)

burgersode ODE with strongly state-dependent mass matrix - Burger's equation solved using a moving mesh
technique

fem1ode Stiff problem with a time-dependent mass matrix - finite element method

fem2ode Stiff problem with a constant mass matrix - finite element method

hb1dae Stiff DAE from a conservation law

hb1ode Stiff problem solved on a very long interval - Robertson chemical reaction

orbitode Advanced event location - restricted three body problem

rigidode Nonstiff problem - Euler equations of a rigid body without external forces

vdpode Parameterizable van der Pol equation (stiff for large)

 Initial Value Problems for ODEs and DAEs Introduction to Initial Value ODE Problems

Página 2 de 2Differential Equations (Mathematics)

21/04/2004file://E:\help\techdoc\math_anal\diffeq3.html

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Solve initial value problems for ordinary differential equations (ODEs)

Syntax

[T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y] = solver(odefun,tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb.

Arguments

Description

[T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the system of differential equations
 from time t0 to tf with initial conditions y0. Function f = odefun(t,y), for a scalar t and a

column vector y, must return a column vector f corresponding to . Each row in the solution array Y

corresponds to a time returned in column vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

[T,Y] = solver(odefun,tspan,y0,options) solves as above with default integration parameters replaced
by property values specified in options, an argument created with the odeset function. Commonly used
properties include a scalar relative error tolerance RelTol (1e-3 by default) and a vector of absolute error
tolerances AbsTol (all components are 1e-6 by default). See odeset for details.

[T,Y] = solver(odefun,tspan,y0,options,p1,p2...) solves as above, passing the additional parameters
p1,p2... to the function odefun, whenever it is called. Use options = [] as a place holder if no options are
set.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while also finding where functions
of , called event functions, are zero. For each event function, you specify whether the integration is to

MATLAB Function Reference

odefun A function that evaluates the right-hand side of the differential equations. All solvers solve
systems of equations in the form or problems that involve a mass matrix,

. The ode23s solver can solve only equations with constant mass matrices.

ode15s and ode23t can solve problems with a mass matrix that is singular, i.e., differential-
algebraic equations (DAEs).

tspan A vector specifying the interval of integration, [t0,tf]. To obtain solutions at specific times (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

y0 A vector of initial conditions.

options Optional integration argument created using the odeset function. See odeset for details.

p1,p2... Optional parameters to be passed to odefun.

Página 1 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

terminate at a zero and whether the direction of the zero crossing matters. This is done by setting the Events
property to, say, @EVENTS, and creating a function [value,isterminal,direction] = EVENTS(t,y). For the ith
event function:

l value(i) is the value of the function.
l isterminal(i) = 1 if the integration is to terminate at a zero of this event function and 0 otherwise.
l direction(i) = 0 if all zeros are to be computed (the default), +1 if only the zeros where the event

function increases, and -1 if only the zeros where the event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time at which an event occurs, the solution at the
time of the event, and the index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you can use with deval to evaluate the
solution at any point on the interval [t0,tf]. You must pass odefun as a function handle. The structure sol
always includes these fields:

If you specify the Events option and events are detected, sol also includes these fields:

If you specify an output function as the value of the OutputFcn property, the solver calls it with the computed
solution after each time step. Four output functions are provided: odeplot, odephas2, odephas3, odeprint.
When you call the solver with no output arguments, it calls the default odeplot to plot the solution as it is
computed. odephas2 and odephas3 produce two- and three-dimnesional phase plane plots, respectively.
odeprint displays the solution components on the screen. By default, the ODE solver passes all components of
the solution to the output function. You can pass only specific components by providing a vector of indices as
the value of the OutputSel property. For example, if you call the solver with no output arguments and set the
value of OutputSel to [1,3], the solver plots solution components 1 and 3 as they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix is critical to reliability

and efficiency. Use odeset to set Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian or to the matrix

 if the Jacobian is constant. If the Jacobian property is not set (the default), is approximated by

finite differences. Set the Vectorized property 'on' if the ODE function is coded so that odefun(T,[Y1,Y2 ...])
returns [odefun(T,Y1),odefun(T,Y2) ...]. If is a sparse matrix, set the JPattern property to the sparsity

pattern of , i.e., a sparse matrix S with S(i,j) = 1 if the ith component of depends on the jth

component of , and 0 otherwise.

The solvers of the ODE suite can solve problems of the form , with time- and state-

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.solver Solver name.

sol.xe Points at which events, if any, occurred. sol.xe(end) contains the exact point of a terminal event, if
any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in the Event option. The values indicate
which event has been detected.

Página 2 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

dependent mass matrix . (The ode23s solver can solve only equations with constant mass matrices.) If a

problem has a mass matrix, create a function M = MASS(t,y) that returns the value of the mass matrix, and use
odeset to set the Mass property to @MASS. If the mass matrix is constant, the matrix should be used as the value
of the Mass property. Problems with state-dependent mass matrices are more difficult:

l If the mass matrix does not depend on the state variable and the function MASS is to be called with one

input argument, t, set the MStateDependence property to 'none'.
l If the mass matrix depends weakly on , set MStateDependence to 'weak' (the default) and otherwise, to

'strong'. In either case, the function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit sparsity:

l Return a sparse .

l Supply the sparsity pattern of using the JPattern property or a sparse using the Jacobian
property.

l For strongly state-dependent , set MvPattern to a sparse matrix S with S(i,j) = 1 if for any k,

the (i,k) component of depends on component j of , and 0 otherwise.

If the mass matrix is singular, then is a differential algebraic equation. DAEs have

solutions only when is consistent, that is, if there is a vector such that

. The ode15s and ode23t solvers can solve DAEs of index 1 provided that y0 is

sufficiently close to being consistent. If there is a mass matrix, you can use odeset to set the MassSingular
property to 'yes', 'no', or 'maybe'. The default value of 'maybe' causes the solver to test whether the problem
is a DAE. You can provide yp0 as the value of the InitialSlope property. The default is the zero vector. If a
problem is a DAE, and y0 and yp0 are not consistent, the solver treats them as guesses, attempts to compute
consistent values that are close to the guesses, and continues to solve the problem. When solving DAEs, it is
very advantageous to formulate the problem so that is a diagonal matrix (a semi-explicit DAE).

The algorithms used in the ODE solvers vary according to order of accuracy [6] and the type of systems (stiff or

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you try.

ode23 Nonstiff Low If using crude error tolerances or solving moderately stiff
problems.

ode113 Nonstiff Low to high If using stringent error tolerances or solving a computationally
intensive ODE file.

ode15s Stiff Low to medium If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems and the mass
matrix is constant.

ode23t Moderately
Stiff

Low If the problem is only moderately stiff and you need a solution
without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

Página 3 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

nonstiff) they are designed to solve. See Algorithms for more details.

Options

Different solvers accept different parameters in the options list. For more information, see odeset and
Improving ODE Solver Performance in the "Mathematics" section of the MATLAB documentation.

Examples

Example 1. An example of a nonstiff system is the system of equations describing the motion of a rigid body
without external forces.

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and solve on a time interval [0 12]
with an initial condition vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol, NormControl

OutputFcn, OutputSel, Refine, Stats

Events

MaxStep, InitialStep

Jacobian, JPattern, Vectorized -- -- --

Mass
MStateDependence
MvPattern
MassSingular

--
--

--
--

--
--

--
--
--

--

InitialSlope -- -- -- -- --

MaxOrder, BDF -- -- -- -- -- --

Página 4 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

Example 2. An example of a stiff system is provided by the van der Pol equations in relaxation oscillation. The
limit cycle has portions where the solution components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute tolerances (1e-3 and 1e-6, respectively) and solve
on a time interval of [0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o')

Página 5 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

Algorithms

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver - in
computing y(t

n
), it needs only the solution at the immediately preceding time point, y(t

n-1
). In general, ode45

is the best function to apply as a "first try" for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may be more
efficient than ode45 at crude tolerances and in the presence of moderate stiffness. Like ode45, ode23 is a one-
step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more efficient than ode45 at
stringent tolerances and when the ODE file function is particularly expensive to evaluate. ode113 is a multistep
solver - it normally needs the solutions at several preceding time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to be unduly slow, try using one of
the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation formulas (NDFs). Optionally, it uses the
backward differentiation formulas (BDFs, also known as Gear's method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very inefficient, and you suspect that
the problem is stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one-step solver, it may be more
efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which ode15s is not
effective. [9]

ode23t is an implementation of the trapezoidal rule using a "free" interpolant. Use this solver if the problem is
only moderately stiff and you need a solution without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a
trapezoidal rule step and a second stage that is a backward differentiation formula of order two. By construction,
the same iteration matrix is used in evaluating both stages. Like ode23s, this solver may be more efficient than

Página 6 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

ode15s at crude tolerances. [8], [1]

See Also

deval, odeset, odeget, @ (function handle)

References

[1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith, "Transient Simulation of
Silicon Devices and Circuits," IEEE Trans. CAD, 4 (1985), pp 436-451.

[2] Bogacki, P. and L. F. Shampine, "A 3(2) pair of Runge-Kutta formulas," Appl. Math. Letters , Vol. 2, 1989,
pp 1-9.

[3] Dormand, J. R. and P. J. Prince, "A family of embedded Runge-Kutta formulae," J. Comp. Appl. Math., Vol.
6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, Prentice-
Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York,
1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary Differential Equations: the Initial Value
Problem, W. H. Freeman, San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, "Analysis and Implementation of TR-BDF2," Applied Numerical
Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing,
Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, "Solving Index-1 DAEs in MATLAB and Simulink,"
SIAM Review , Vol. 41, 1999, pp 538-552.

 nzmax odefile

Página 7 de 7ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\ode45.html

odeget

Extract properties from options structure created with odeset

Syntax

o = odeget(options,'name')
o = odeget(options,'name',default)

Description

o = odeget(options,'name') extracts the value of the property specified by string 'name' from integrator
options structure options, returning an empty matrix if the property value is not specified in options. It is only
necessary to type the leading characters that uniquely identify the property name. Case is ignored for property
names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the named property is not specified in
options.

Example

Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

 1.0000e-04

odeget(options,'AbsTol')
ans =

 0.0010 0.0020 0.0030

See Also

odeset

MATLAB Function Reference

 odefile odeset

Página 1 de 1odeget (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\odeget.html

odeset

Create or alter options structure for input to ordinary differential equation (ODE) solvers

Syntax

options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description

The odeset function lets you adjust the integration parameters of the ODE solvers. The ODE solvers can
integrate systems of differential equations of one of these forms

or

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates an integrator options structure in which
the named properties have the specified values. Any unspecified properties have default values. It is sufficient to
type only the leading characters that uniquely identify a property name. Case is ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing options structure oldopts.

options = odeset(oldopts,newopts) alters an existing options structure oldopts by combining it with a
new options structure newopts. Any new options not equal to the empty matrix overwrite corresponding options
in oldopts.

odeset with no input arguments displays all property names as well as their possible and default values.

ODE Properties

The available properties depend on the ODE solver used. There are several categories of properties:

l Error tolerance
l Solver output
l Jacobian matrix
l Event location
l Mass matrix and differential-algebraic equations (DAEs)
l Step size
l ode15s

MATLAB Function Reference

Note This reference page describes the ODE properties for MATLAB, Version 6. The Version 5
properties are supported only for backward compatibility. For information on the Version 5 properties,

Página 1 de 4odeset (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\odeset.html

type at the MATLAB command line: more on, type odeset, more off.

Error Tolerance Properties

Property Value Description

RelTol Positive scalar
{1e-3}

A relative error tolerance that applies to all components of the solution vector.
The estimated error in each integration step satisfies
e(i) <= max(RelTol*abs(y(i)),AbsTol(i)

AbsTol Positive scalar
or vector {1e-
6}

The absolute error tolerance. If scalar, the tolerance applies to all components
of the solution vector. Otherwise the tolerances apply to corresponding
components.

NormControl on | {off} Control error relative to norm of solution. Set this property on to request that
the solvers control the error in each integration step with norm(e) <= max
(RelTol*norm(y),AbsTol). By default the solvers use a more stringent
component-wise error control.

Solver Output Properties

Property Value Description

OutputFcn Function Installable output function. The ODE solvers provide sample functions that you can
use or modify:

 odeplot Time series plotting (default)

 odephas2 Two-dimensional phase plane plotting

 odephas3 Three-dimensional phase plane plotting

 odeprint Print solution as it is computed

 To create or modify an output function, see ODE Solver Output Properties in the
"Differential Equations" section of the MATLAB documentation.

OutputSel Vector of
indices

Specifies the components of the solution vector that the solver passes to the output
function.

Refine Positive
integer

Produces smoother output, increasing the number of output points by the specified
factor. The default value is 1 in all solvers except ode45, where it is 4. Refine
doesn't apply if length(tspan) > 2.

Stats on | {off} Specifies whether the solver should display statistics about the computational cost
of the integration.

Jacobian Matrix Properties (for ode15s, ode23s, ode23t, and ode23tb)

Property Value Description

Jacobian Function |
constant
matrix

Jacobian function. Set this property to @FJac (if a function FJac(t,y) returns
) or to the constant value of .

JPattern Sparse
matrix of
{0,1}

Sparsity pattern. Set this property to a sparse matrix with if

component of depends on component of , and 0 otherwise.

Página 2 de 4odeset (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\odeset.html

Vectorized on | {off} Vectorized ODE function. Set this property on to inform the stiff solver that the
ODE function F is coded so that F(t,[y1 y2 ...]) returns the vector [F
(t,y1) F(t,y2) ...]. That is, your ODE function can pass to the solver a
whole array of column vectors at once. A stiff function calls your ODE function in
a vectorized manner only if it is generating Jacobians numerically (the default
behavior) and you have used odeset to set Vectorized to on.

Event Location Property

Property Value Description

Events Function Locate events. Set this property to @Events, where Events is the event function. See the
ODE solvers for details.

Mass Matrix and DAE-Related Properties

Property Value Description

Mass Constant
matrix |
function

For problems set this property to the value of the constant

mass matrix . For problems , set this property to

@Mfun, where Mfun is a function that evaluates the mass matrix .

MStateDependence none |
{weak} |
strong

Dependence of the mass matrix on . Set this property to none for

problems . Both weak and strong indicate , but

weak results in implicit solvers using approximations when solving
algebraic equations. For use with all solvers except ode23s.

MvPattern Sparse
matrix

 sparsity pattern. Set this property to a sparse matrix

with if for any , the component of depends

on component of , and 0 otherwise. For use with the ode15s, ode23t,

and ode23tb solvers when MStateDependence is strong.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is singular. The default value of
'maybe' causes the solver to test whether the problem is a DAE. For use
with the ode15s and ode23t solvers.

InitialSlope Vector Consistent initial slope , where satisfies

. For use with the ode15s and ode23t

solvers when solving DAEs.

Step Size Properties

Property Value Description

MaxStep Positive An upper bound on the magnitude of the step size that the solver uses. The

Página 3 de 4odeset (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\odeset.html

In addition there are two options that apply only to the ode15s solver.

See Also

deval, odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s, ode23s, @ (function handle)

scalar default is one-tenth of the tspan interval.

InitialStep Positive
scalar

Suggested initial step size. The solver tries this first, but if too large an error
results, the solver uses a smaller step size.

ode15s Properties

Property Value Description

MaxOrder 1 | 2 | 3 |
4 | {5}

The maximum order formula used.

BDF on | {off} Set on to specify that ode15s should use the backward differentiation formulas
(BDFs) instead of the default numerical differentiation formulas (NDFs).

 odeget ones

Página 4 de 4odeset (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\odeset.html

deval

Evaluate the solution of a differential equation problem

Syntax

sxint = deval(sol,xint)

Description

sxint = deval(sol,xint) evaluates the solution of a differential equation problem at each element of the
vector xint. For each i, sxint(:,i) is the solution corresponding to xint(i).

The input argument sol is a structure returned by an initial value problem solver (ode45, ode23, ode113,
ode15s, ode23s, ode23t, ode23tb) or the boundary value problem solver (bvp4c). The ordered row vector
sol.x contains the independent variable. For each i, the column sol.y(:,i) contains the solution at sol.x(i).
The structure sol also contains data needed for interpolating the solution in (x(i),x(i+1)). The form of this
data depends on the solver that creates sol. The field sol.solver contains the name of that solver.

Elements of xint must be in the interval [sol.x(1),sol.x(end)].

See Also

ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

BVP solver: bvp4c

MATLAB Function Reference

 detrend diag

Página 1 de 1deval (MATLAB Function Reference)

21/04/2004file://E:\help\techdoc\ref\deval.html

