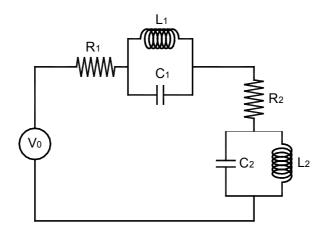
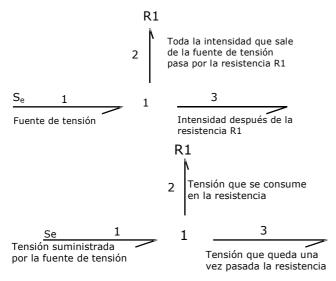

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión.


Para el sistema de la figura, se pide:

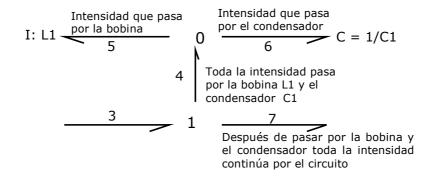
Modelo de bond graph del sistema, incluyendo causalidad, justificando y explicando el mismo.

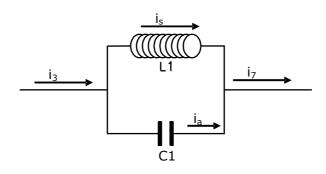
Flujos y esfuerzos del sistema y ecuaciones dinámicas del sistema.


Solución:

En la figura se presenta el circuito eléctrico enunciado compuesto por resistencias, condensadores, bobinas y excitación por medio de una fuente de tensión.

Se va a desarrollar el Bond-Graph del circuito por módulos:


Módulo 1: Resistencia R1



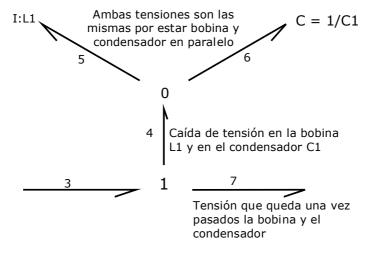
Toda la intensidad del circuito pasa por la resistencia R_1 , es decir, está en serie y por éste motivo la intensidad la que entra en la resistencia es la misma que la que sale de ella. En la resistencia R_1 hay una caída de tensión, de tal forma que después de ella la tensión es igual a la suministrada por la fuente menos la pérdida en la resistencia. Por estas razones, los bonds 1, 2 y 3 estarán en torno a una unión 1.

Módulo 2: Conjunto L1- C1

La bobina L_1 y el condensador C_1 están en paralelo entre ellos, pero en serie con el circuito, es decir, toda la intensidad que pasa por ellos vuelve a sumarse posteriormente y continúa por el circuito.

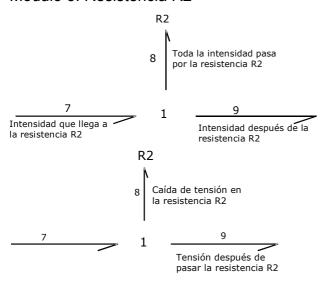
$$I:L1 \xrightarrow{i_5} 0 \xrightarrow{i_6} C = 1/C1$$

$$i_3 = i_7 = i_4$$

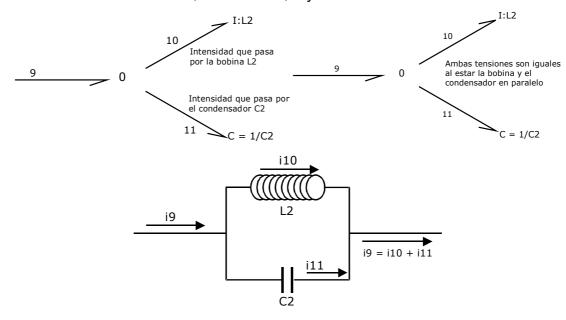

$$i_4 = i_5 + i_6$$

$$i_3 = i_7 = i_4$$

$$i_4 = i_7 = i_7$$

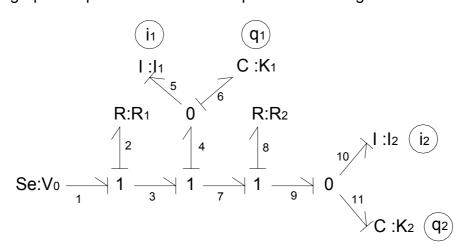

Como los bonds 3, 4, 7 están asociados a la misma intensidad, se encuentran en una unión 1.

La intensidad que llega por el bond 4 se divide, posteriormente, en la que pasa por la bobina y la que se va por el condensador. Como se debe cumplir que $i_4 = i_5 + i_6$, los bonds 4, 5 y 6 estarán en torno a una unión 0.



Como la bobina y el condensador están en paralelo tienen la misma tensión por lo que los bonds 4, 5 y 6 se encuentran en una unión 0. Como el paralelo bobinacondensador está en serie con el circuito, tras él la tensión es igual a la de entrada menos la perdida en la bobina y el condensador. Los bonds 3, 4 y 7 están en una unión 1.

Módulo 3: Resistencia R2



Al igual que la otra resistencia, R_2 está en serie con el circuito y, por lo tanto, toda la intensidad pasa por ella. Como la resistencia R_2 está en serie con el circuito, después de ella la tensión es igual a la de entrada menos la caída en la resistencia. Por este motivo, los bonds 7, 8 y 9 están en una unión 1.

La bobina L_2 y el condensador C_2 , se encuentran en paralelo y por lo tanto, la intensidad que llega después de la resistencia R_2 debe dividirse entre la bobina y el condensador. Debido a que la intensidad i_9 debe dividirse en dos ramas, los bonds 9, 10 y 11 se encuentran en una unión 0. Por último, como la bobina L_2 y el condensador de capacidad C_2 están en paralelo, la tensión es la misma en ambos elementos y en consecuencia los bonds 9, 10 y 11 están en una unión 0.

El bond graph completo del circuito se representa en la figura.

Flujos y esfuerzos:

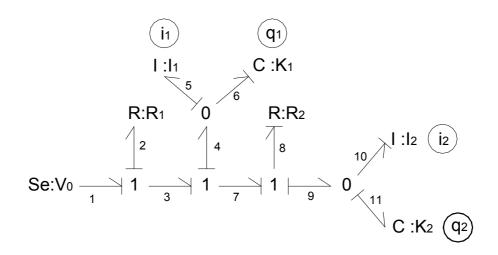
Bond	Flujos	Esfuerzos
1	$i_2 + \dot{q}_2$	V_0
2	$i_2 + \dot{q}_2$	$R_1(i_2 + \dot{q}_2)$
3	$i_2 + \dot{q}_2$	$V_0 - R_1(i_2 + \dot{q}_2)$
4	$i_2 + \dot{q}_2$	q_1/C_1
5	i_1	$L_1 \dot{i}_1 = q_1 / C_1$
6	$\dot{q}_1 = i_2 + \dot{q}_2 - i_1$	q_1/C_1
7	$i_2 + \dot{q}_2$	$V_0 - R_1(i_2 + \dot{q}_2) - q_1 / C_1$
8	$i_2 + \dot{q}_2$	$R_2(i_2+\dot{q}_2)$
9	$i_2 + \dot{q}_2$	$V_0 - R_1(i_2 + \dot{q}_2) - q_1/C_1 - R_2(i_2 + \dot{q}_2)$
10	i_2	$L_2 \dot{i}_2 = V_0 - R_1 (i_2 + \dot{q}_2) - q_1 / C_1 - R_2 (i_2 + \dot{q}_2)$
11	\dot{q}_2	$q_2 / C_2 = V_0 - R_1(i_2 + \dot{q}_2) - q_1 / C_1 - R_2(i_2 + \dot{q}_2)$

Ecuaciones:

en (6)
$$\dot{q}_1 = i_2 + \dot{q}_2 - i_1$$

en (5) $L_1 \dot{i}_1 = q_1 / C_1$

en (5)
$$L_1 i_1 = q_1 / C_1$$


en (10)
$$L_2 \dot{i}_2 = V_0 - R_1 (i_2 + \dot{q}_2) - q_1 / C_1 - R_2 (i_2 + \dot{q}_2)$$

en (11)
$$q_2/C_2 = V_0 - R_1(i_2 + \dot{q}_2) - q_1/C_1 - R_2(i_2 + \dot{q}_2)$$

Operando con ellas:

$$\begin{split} L_1 \dot{i}_1 &= q_1 / C_1 \\ L_2 \dot{i}_2 &= q_2 / C_2 \\ \dot{q}_1 &= \frac{V_0 - q_1 / C_1 - q_2 / C_2}{R_1 + R_2} - i_1 \\ \dot{q}_2 &= \frac{V_0 - q_1 / C_1 - q_2 / C_2}{R_1 + R_2} - i_2 \end{split}$$

Se puede resolver también de otra forma:

Se establece el flujo en 8 (i) como variable adicional

Bond	Flujos	Esfuerzos
1	i	V_0
2	i	R_1i
3	i	$V_0 - R_1 i$
4	i	q_1/C_1
5	i_1	q_1/C_1
6	$i - i_1$	q_1/C_1
7	i	V_0 - $R_1 i$ - q_1 / C_1
8	i	$R_2 i = V_0 - R_1 i - q_1 / C_1 - q_2 / C_2$
9	i	q_2/C_2
10	i_2	q_2/C_2
11	$i - i_2$	q_2/C_2

Ecuaciones dinámicas

en (5)
$$L_1 \dot{i}_1 = q_1 / C_1$$

en (10) $L_2 \dot{i}_2 = q_2 / C_2$
en (6) $\dot{q}_1 = i - i_1$

en (6)
$$\dot{q}_1 = i - i_1$$

en (11)
$$\dot{q}_2 = i - i_2$$

en (8)
$$R_2 i = V_0 - R_1 i - q_1 / C_1 - q_2 / C_2$$

operando con (8) despejando i resulta:

$$(R_1 + R_2)i = V_0 - q_1 / C_1 - q_2 / C_2$$

$$i = \frac{V_0 - q_1 / C_1 - q_2 / C_2}{R_1 + R_2}$$

de donde:

$$\begin{split} L_1 \dot{i}_1 &= q_1 / C_1 \\ L_2 \dot{i}_2 &= q_2 / C_2 \\ \dot{q}_1 &= \frac{V_0 - q_1 / C_1 - q_2 / C_2}{R_1 + R_2} - i_1 \\ \dot{q}_2 &= \frac{V_0 - q_1 / C_1 - q_2 / C_2}{R_1 + R_2} - i_2 \end{split}$$