LÍNEAS DE NIVELACIÓN

SOLUCIÓN

Calculemos la incertidumbre por visual.

$$- \qquad e_v = \frac{1}{20} \bullet S^{cc} = 3^{cc}.$$

$$e_p = \frac{150^{cc}}{A} \bullet \left(1 + \frac{4 \bullet A}{100} \right) = 9^{cc}, 75.$$

utilizando las expresiones de Topografía I:

$$e_p = \frac{C_n^{cc}}{A} \bullet K = 9^{cc},375.$$

siendo
$$C_n = 150^{cc} y K=2,5$$

$$- e_{visual} = \frac{\sqrt{e_v^2 + e_p^2}}{636620} \bullet D = 1,24 \ mm$$

$$e_k = e_{visual} \sqrt{\frac{1000 (m)}{L_{visual} (m)}} = 4,373 mm$$

Veamos si son tolerables los anillos:

- Anillo 1: Error: 6mm. Tolerancia: $T=e_k \bullet \sqrt{k_{AB}} \bullet \sqrt{2}=6$ mm. - Anillo 2: Error: 5mm. Tolerancia: 5 mm. - Anillo 3: Error: 7mm. Tolerancia: 7 mm. - Anillo 4: Error: 6mm. Tolerancia: 6 mm. - Anillo 5: Error: 7mm. Tolerancia: 7 mm.

Veamos si es tolerable la nivelación ida/vuelta:

2
 6 7 ${$

$$T = e_k \bullet \sqrt{k_{AF}} \sqrt{2} = 0.013 \, m,$$

luego es tolerable, y aceptamos todos los datos de campo.

Procedemos a calcular las altitudes

M. Farjas

TRAMO	DESNIVEL		РТО Н	Comp.	comp	. н
comp				bruta	final	
		Α	684,715			684,715
A-B	25,410	В	710,125	-0,001	-0,001	710,124
B-C	8,911	С	719,036			719,035
C-D	-22,641	D	696,395	-0,001	-0,001	696,393
D-E	32,175	Ε	728,57	-0,001	-0,001	728,567
E-F	29,091	F	757,661	-0,001	-0,001	757,657
F-E	-29,098	Ε	728,563	-0,001	-0,001	728,558
E-D	-32,169	D	696,394	-0,001	-0,001	696,388
D-C	22,648	С	719,042	-0,001	-0,001	719,035
C-B	-8,916	В	710,126			710,119
B-A	-25,404	Α	684,722	-0,001	-0,000	684,715

Sc = -0.008

Como criterio de compensación se ha considerado la longitud de los anillos.

Como Sc =-0,008, en un primer cálculo de las compensaciones a aplicar, necesitamos reducir una unidad de compensación para que se cumpla

$$Sc = -e_c$$

Corregimos por ello la compensación a aplicar al último tramo.

La compensación se ha aplicado directamente a las altitudes. Para ello se ha ido acumulando.

La solución final es:

$H_F = 757,657$

Si se desease conocer la altitud de los puntos intermedios se obtendría:

 $H_A = 684,715$

 $H_B = \, 710,122$

 $H_C = 719,035$

 $H_D = 696,391$

 $H_E = 728,563$

M. Farjas