INCERTIDUMBRE DESNIVELES NT

- 1. Calcular la incertidumbre existente en un desnivel calculado por nivelación trigonométrica, en las siguientes condiciones de observación:
 - error estándar 5 mm ± 5 ppm,
 - distancia observada = 400 m,
 - el error de señal es de 2 mm
 - el error de estación es de 2 mm.
 - altura de enrase no será superior de 3 m
 - el trabajo se realizará con nivel esférico en el jalón
 - los cenitales nunca serán mayores de 95⁹

y el instrumental de observación tiene las siguientes características:

- 30x aumentos
- sensibilidad del nivel 100^{cc}
- apreciación = 10^{cc}

SOLUCIÓN: Incertidumbre = 18 mm

- 2. Calcular la incertidumbre existente en un desnivel calculado por nivelación trigonométrica, en las siguientes condiciones de observación:
 - error estándar 3 mm ± 3 ppm,
 - distancia observada = 500 m.
 - el error de señal es de 2 mm
 - el error de estación es de 2 mm.
 - altura de enrase no será superior de 2 m
 - el trabajo se realizará sin nivel esférico en el jalón
 - los cenitales nunca serán mayores de 97⁹

y el instrumental de observación tiene las siguientes características:

- 30x aumentos
- sensibilidad del nivel 100^{cc}
- apreciación = 10^{cc}

SOLUCIÓN: Incertidumbre = 22 mm

M. Farjas